Are you David Hunter?

Claim your profile

Publications (3)10.01 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network.
    European Journal of Neuroscience 11/2011; 34(11):1857-70. · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-human-primate fMRI is becoming increasingly recognised as the missing link between the widely applied methods of human imaging and intracortical animal electrophysiology. A crucial requirement for the optimal application of this method is the precise knowledge of the time course of the Blood Oxygenation Level Dependent (BOLD) signal. We mapped the BOLD signal time course in the inferior colliculus (IC), medial geniculate body (MGB) and in tonotopically defined fields in the auditory cortex of two macaques. The results show little differences in the BOLD-signal time courses within the auditory pathway. However, we observed systematic differences in the magnitude of the change in the BOLD signal with significantly stronger signal changes in field A1 of the auditory cortex compared to field R. The measured time course of the signal was in good agreement with similar studies in human auditory cortex but showed considerable differences to data reported from macaque visual cortex. Consistent with the studies in humans we measured a peak in the BOLD response around 4 s after the onset of 2-s broadband noise stimuli while previous studies recorded from the primary visual cortex of the same species reported the earliest peaks to short visual stimuli several seconds later. The comparison of our results with previous studies does not support differences in haemodynamic responses within the auditory system between human and non-human primates. Furthermore, the data will aid optimal design of future auditory fMRI studies in non-human primates.
    NeuroImage 04/2010; 50(3):1099-108. · 6.25 Impact Factor
  • Seventh Göttingen Meeting of the German Neuroscience Society. 01/2007; 7:TS24-1C (page 125).