Ryuichi Sugamata

Chiba University, Tiba, Chiba, Japan

Are you Ryuichi Sugamata?

Claim your profile

Publications (8)22.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Severe respiratory disease arising from influenza virus infection has a high fatality rate. Neutrophil myeloperoxidase (MPO) has been implicated in the pathogenesis of severe influenza-induced pneumonia because extracellularly released MPO mediates the production of hypochlorous acid, a potent tissue injury factor. To search for candidate anti-influenza compounds, we screened leucomycin A3 (LM-A3), spiramycin (SPM), an erythromycin derivative (EM900, in which anti-bacterial activity has been eliminated), and clarithromycin (CAM), by analyzing their ability to inhibit MPO release in neutrophils from mice and humans. When each candidate was injected into mice infected with a lethal dose of A/H1N1 influenza virus (PR-8), LM-A3 produced the highest survival rate (80.9%). We found that LM-A3 induced beneficial effects on lung pathology and viral proliferation involved in the regulatory activity of MPO release, pro-inflammatory cytokines and interferon-α production in the lung. SPM and EM900 also induced positive survival effects in the infected mice, whereas CAM did not. We further found that these compounds inhibit virus proliferation in human pneumonia epithelial A549 cells in vitro. LM-A3 showed effective action against influenza A virus infection with high anti-viral activity in human host cells, indicating the possibility that LM-A3 is a prospective lead compound for the development of a drug for human influenza. The positive survival effect induced by EM900 suggests that pharmacological architectures between anti-bacterial and anti-influenza virus activities can be dissociated in macrolide derivatives. These observations provide valuable evidence for the potential development of novel macrolide derivatives that have strong anti-viral but no anti-bacterial activity.The Journal of Antibiotics advance online publication, 5 February 2014; doi:10.1038/ja.2013.132.
    The Journal of Antibiotics 02/2014; 67(3). DOI:10.1038/ja.2013.132 · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antineutrophil cytoplasmic autoantibody (ANCA) directed against myeloperoxidase (MPO), a diagnostic criterion in MPO-ANCA-associated vasculitis (MPO-AAV), does not always correlate with disease activity. Here, we detected autoantibodies against moesin, which was located on the surface of stimulated endothelial cells, in the serum of patients. The anti-moesin autoantibody titer was evaluated by ELISA. Seventeen kinds of cytokines/chemokines were measured by a Bio-Plex system. Serum creatinine in the anti-moesin autoantibody-positive group was higher than that in the negative group. Additionally, interferon (IFN)-γ, macrophage chemotactic peptide-1 (MCP-1), interleukin (IL)-2, IL-7, IL-12p70, IL-13, granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor were significantly higher in the positive group. Furthermore, IL-7 and IL-12p70 levels correlated with the anti-moesin autoantibody titer. Based on these findings and the binding of anti-moesin IgG to neutrophils and monocytes, we detected the secretion of cytokines/chemokines such as IFN-γ, MCP-1 and GM-CSF from these cells. The anti-moesin autoantibody existed in the serum of patients with MPO-AAV and was associated with the production of inflammatory cytokines/chemokines targeting neutrophils with a cytoplasmic profile, which suggests that the anti-moesin autoantibody has the possibility to be a novel autoantibody developing vasculitis via neutrophil and endothelial cell activation.
    Nephrology Dialysis Transplantation 12/2013; 29(6). DOI:10.1093/ndt/gft469 · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Mechanical ventilation (MV) is well known to potentially cause ventilator-associated lung injury (VALI). It has also been reported recently that activation of invariant natural killer T (iNKT) cells is involved in the onset/progression of airway inflammation. We analyzed the roles of inflammatory cells, including iNKT cells, and cytokines/chemokines in a mouse model of VALI. C57BL/6 and Vα14(+)NKT cell-deficient (Jα18KO) female mice were subjected to MV for 5 hours. The MV induced lung injury in the mice, with severe histological abnormalities, elevation in the percentages of neutrophils in the bronchoalveolar lavage fluid (BALF), and increase in the number of iNKT cells in the lung. Jα18KO mice subjected to MV for 5 hours also showed lung injury, with decrease of the PaO2/FiO2 ratio (P/F ratio) and elevation of the levels of total protein, IL-5, IL-6, IL-12p40, and keratinocyte-derived cytokine (KC) in the BALF. Intranasal administration of anti-IL-5 monoclonal antibody (mAb) or anti-IL-6 receptor (IL-6R) mAb into the Jα18KO mice prior to the start of MV resulted in significant improvement in the blood oxygenation. In addition, the anti-IL-5 mAb administration was associated with a decrease in the levels of IL-5, IL-9, and IL-6R in the BALF, and anti-IL-6R mAb administration suppressed the mRNA expressions of IL-5, IL-6, IL-6R, and KC. These results suggest that iNKT cells may play a role in attenuating the inflammatory caused by ventilation through IL-5 and IL-6R.
    Experimental Lung Research 11/2013; 40(1). DOI:10.3109/01902148.2013.854518 · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because the pathogenesis of acute respiratory distress syndrome (ARDS) induced by influenza virus infection remains unknown, we can only improve on existing therapeutic interventions. To approach the subject, we investigated immunological etiology focused on cytokines and an acute lung damage factor in influenza-induced ARDS by using a PR-8 (A/H1N1)-infected mouse model. The infected mouse showed fulminant severe pneumonia with leukocyte infiltration, claudin alteration on tight junctions, and formation of hyaline membranes. In addition to interferon (IFN)-α, plenty of keratinocyte-derived chemokines (KC), macrophage inflammatory protein 2 (MIP-2), regulated on activation normal T-cell expressed and secreted (RANTES), and monocyte chemotactic protein 1 (MCP-1) were significantly released into bronchoalveolar lavage fluid (BALF) of the model. We focused on neutrophil myeloperoxidase (MPO) as a potent tissue damage factor and examined its contribution in influenza pneumonia by using mice genetically lacking in MPO. The absence of MPO reduced inflammatory damage with suppression of leakage of total BALF proteins associated with alteration of claudins in the lung. MPO(-/-) mice also suppressed viral load in the lung. The present study suggests that MPO-mediated OCl(-) generation affects claudin molecules and leads to protein leakage and viral spread as a damage factor in influenza-induced ARDS.
    Microbiology and Immunology 12/2011; 56(3):171-82. DOI:10.1111/j.1348-0421.2011.00424.x · 1.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the antiviral activity of nanosized copper(I) iodide (CuI) particles having an average size of 160 nm. CuI particles showed aqueous stability and generated hydroxyl radicals, which were probably derived from monovalent copper (Cu(+)). We confirmed that CuI particles showed antiviral activity against an influenza A virus of swine origin (pandemic [H1N1] 2009) by plaque titration assay. The virus titer decreased in a dose-dependent manner upon incubation with CuI particles, with the 50% effective concentration being approximately 17 μg/ml after exposure for 60 min. SDS-PAGE analysis confirmed the inactivation of the virus due to the degradation of viral proteins such as hemagglutinin and neuraminidase by CuI. Electron spin resonance (ESR) spectroscopy revealed that CuI generates hydroxyl radicals in aqueous solution, and radical production was found to be blocked by the radical scavenger N-acetylcysteine. Taken together, these findings indicate that CuI particles exert antiviral activity by generating hydroxyl radicals. Thus, CuI may be a useful material for protecting against viral attacks and may be suitable for applications such as filters, face masks, protective clothing, and kitchen cloths.
    Applied and Environmental Microbiology 12/2011; 78(4):951-5. DOI:10.1128/AEM.06284-11 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system.
    Microbiology and Immunology 12/2011; 55(12):874-84. DOI:10.1111/j.1348-0421.2011.00396.x · 1.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In teleosts, the kidney is the major immune organ. From the kidney of fugu (Takifugu rubripes), we isolated a unique leukocyte population. This population shows properties similar to those of mammalian plasmablasts. First, adherent cells expressing IgM protein on their surface were obtained from the fugu kidney. Flow cytometry (FCM) showed that these cells were mainly composed of two cell populations: IgM+CD8α⁻ cells and IgM+CD8α+ cells. Further characterization of the IgM+CD8α⁻ population by RT-PCR demonstrated that the cells expressed secretory-type IgM as well as Bcl-6 and Blimp-1, developmental marker genes for the B cell lineage. Western blotting also showed that the cells secreted IgM protein. These results indicate that the IgM+CD8α⁻ cells are similar to cells at the plasmablast stage in mammals. This is the first report isolating plasmablast-like leukocytes in fish species. Our data also suggests that the teleosts kidney is a organ where B cells terminally differentiate into the plasma cells.
    Fish &amp Shellfish Immunology 02/2011; 30(2):682-90. DOI:10.1016/j.fsi.2010.12.018 · 2.67 Impact Factor
  • Source
    Ryuichi Sugamata · Hiroaki Suetake · Kiyoshi Kikuchi · Yuzuru Suzuki
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, professional APCs induce adaptive immunity via the activation of T cells. During this process, B7 family molecules present upon APCs are known to play crucial roles in optimal T cell stimulation. In contrast, the confirmation of APCs in a nonmammalian vertebrate has yet to be achieved. To obtain further insights into the evolutionary origin of APCs, we have identified three members of the B7 family in the teleost Takifugu rubripes (fugu): B7-H1/DC, B7-H3, and B7-H4. The three fugu B7s were expressed on the surface of blood monocytes. The B7(+) monocytes, which are composed of at least two distinct populations, expressed the MHC class II component gene. The fugu B7 molecules bound to activated T cells, indicating that putative B7 receptors were expressed upon T cells. Fugu B7-H1/DC inhibited T cell proliferation concomitant with increasing levels of both IL-10 and IFN-gamma expression, whereas both B7-H3 and B7-H4 promoted T cell growth following IL-2 induction and the suppression of IL-10. These observations indicate that fugu B7s regulate T cell responses via receptors upon T cells. We suggest that fish B7(+) monocytes are APCs and that a costimulatory system has already developed in fish via the evolutionary process.
    The Journal of Immunology 07/2009; 182(11):6799-806. DOI:10.4049/jimmunol.0803371 · 4.92 Impact Factor

Publication Stats

54 Citations
22.24 Total Impact Points


  • 2013
    • Chiba University
      • Graduate School of Medicine
      Tiba, Chiba, Japan
  • 2011
    • National Institute of Infectious Diseases, Tokyo
      Edo, Tōkyō, Japan
  • 2009–2011
    • The University of Tokyo
      Tōkyō, Japan