Meriem El Ghachi

Unité Inserm U1077, Caen, Lower Normandy, France

Are you Meriem El Ghachi?

Claim your profile

Publications (13)56.17 Total impact

  • PLoS ONE 11/2015; 10(11):e0142870. DOI:10.1371/journal.pone.0142870 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains.
    Cell host & microbe 06/2013; 13(6):735-45. DOI:10.1016/j.chom.2013.04.016 · 12.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: H. pylori colonizes half of the world's population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA) has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS) and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8) production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.
    PLoS ONE 04/2013; 8(4):e60657. DOI:10.1371/journal.pone.0060657 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colicins are proteins produced by some strains of Escherichia coli to kill competitors belonging to the same species. Among them, ColM (colicin M) is the only one that blocks the biosynthesis of peptidoglycan, a specific bacterial cell-wall polymer essential for cell integrity. ColM acts in the periplasm by hydrolysing the phosphoester bond of the peptidoglycan lipid intermediate (lipid II). ColM cytotoxicity is dependent on FkpA of the targeted cell, a chaperone with peptidylprolyl cis-trans isomerase activity. Dissection of ColM was used to delineate the catalytic domain and to identify the active-site residues. The in vitro activity of the isolated catalytic domain towards lipid II was 50-fold higher than that of the full-length bacteriocin. Moreover, this domain was bactericidal in the absence of FkpA under conditions that bypass the import mechanism (FhuA-TonB machinery). Thus ColM undergoes a maturation process driven by FkpA that is not required for the activity of the isolated catalytic domain. Genes encoding proteins with similarity to the catalytic domain of ColM were identified in pathogenic strains of Pseudomonas and other genera. ColM acts on several structures of lipid II representative of the diversity of peptidoglycan chemotypes. All together, these data open the way to the potential use of ColM-related bacteriocins as broad spectrum antibacterial agents.
    Biochemical Society Transactions 12/2012; 40(6):1522-7. DOI:10.1042/BST20120189 · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For a long time, colicin M was known for killing susceptible Escherichia coli cells by interfering with cell wall peptidoglycan biosynthesis, but its precise mode of action was only recently elucidated: this bacterial toxin was demonstrated to be an enzyme that catalyzes the specific degradation of peptidoglycan lipid intermediate II, thereby provoking the arrest of peptidoglycan synthesis and cell lysis. The discovery of this activity renewed the interest in this colicin and opened the way for biochemical and structural analyses of this new class of enzyme (phosphoesterase). The identification of a few orthologs produced by pathogenic strains of Pseudomonas further enlarged the field of investigation. The present article aims at reviewing recently acquired knowledge on the biology of this small family of bacteriocins.
    Microbial drug resistance (Larchmont, N.Y.) 03/2012; 18(3):222-9. DOI:10.1089/mdr.2011.0230 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs) and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC) in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 µg/ml±0.1), CD80 (LOGEC50 = 4.88 µg/ml±0.15) and CD86 (LOGEC50 = 5.36 µg/ml±0.1). This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7±5.1% cells versus 12±2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed that PBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP) at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.
    PLoS ONE 10/2011; 6(10):e23995. DOI:10.1371/journal.pone.0023995 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.
    Molecular Microbiology 08/2011; 82(1):68-86. DOI:10.1111/j.1365-2958.2011.07791.x · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Undecaprenyl phosphate is the essential lipid involved in the transport of hydrophilic motifs across the bacterial membranes during the synthesis of cell wall polymers such as peptidoglycan. A HPLC procedure was developed for the quantification of undecaprenyl phosphate and its two derivatives, undecaprenyl pyrophosphate and undecaprenol. During the exponential growth phase, the pools of undecaprenyl phosphate and undecaprenyl pyrophosphate were ca. 75 and 270 nmol/g of cell dry weight, respectively, in Escherichia coli, and ca. 50 and 150 nmol/g, respectively, in Staphylococcus aureus. Undecaprenol was detected in S. aureus (70 nmol/g), but not in E. coli (<1 nmol/g).
    Journal of Chromatography B 12/2008; 877(3):213-20. DOI:10.1016/j.jchromb.2008.12.010 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MraY transferase is an integral membrane protein that catalyzes an essential step of peptidoglycan biosynthesis, namely the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid. It belongs to a large superfamily of eukaryotic and prokaryotic prenyl sugar transferases. No 3D structure has been reported for any member of this superfamily, and to date MraY is the only protein that has been successfully purified to homogeneity. Nineteen polar residues located in the five cytoplasmic segments of MraY appeared as invariants in the sequences of MraY orthologues. A certain number of these invariant residues were found to be conserved in the whole superfamily. To assess the importance of these residues in the catalytic process, site-directed mutagenesis was performed using the Bacillus subtilis MraY as a model. Fourteen residues were shown to be essential for MraY activity by an in vivo functional complementation assay using a constructed conditional mraY mutant strain. The corresponding mutant proteins were purified and biochemically characterized. None of these mutations did significantly affect the binding of the nucleotidic and lipidic substrates, but the k cat was dramatically reduced in almost all cases. The important residues for activity therefore appeared to be distributed in all the cytoplasmic segments, indicating that these five regions contribute to the structure of the catalytic site. Our data show that the D98 residue that is invariant in the whole superfamily should be involved in the deprotonation of the lipid substrate during the catalytic process.
    Biochemistry 09/2008; 47(34):8919-28. DOI:10.1021/bi8006274 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.
    Journal of Biological Chemistry 09/2006; 281(32):22761-72. DOI:10.1074/jbc.M602834200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of the BcrC(Bs) protein, formerly called YwoA, in Escherichia coli or in Bacillus subtilis allows these bacteria to stand higher concentrations of bacitracin. It was suggested that BcrC(Bs) was a membrane-spanning domain of an ATP binding cassette (ABC) transporter involved in bacitracin resistance. However, we hypothesized that this protein has an undecaprenyl pyrophosphate (UPP) phosphatase activity able to compete with bacitracin for UPP. We found that overexpression of a recombinant His6-BcrC(Bs) protein in E. coli (i) increased the resistance of the cells to bacitracin and (ii) increased UPP phosphatase activity in membrane preparations by 600-fold. We solubilized and prepared an electrophoretically pure protein exhibiting a strong UPP phosphatase activity. BcrC(Bs), which belongs to the type 2 phosphatidic acid phosphatase (PAP2) phosphatase superfamily (PF01569), differs totally from the already known BacA UPP phosphatase from E. coli, a member of the PF02673 family of the Protein family (Pfam) database. Thus, BcrC(Bs) and its orthologs form a new class of proteins within the PAP2 phosphatase superfamily, and likely all of them share a UPP phosphatase activity.
    Journal of Biological Chemistry 09/2005; 280(32):28852-7. DOI:10.1074/jbc.M413750200 · 4.57 Impact Factor
  • Meriem El Ghachi · Anne Derbise · Ahmed Bouhss · Dominique Mengin-Lecreulx ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacA gene product of Escherichia coli was recently purified to near homogeneity and identified as an undecaprenyl pyrophosphate phosphatase activity (El Ghachi, M., Bouhss, A., Blanot, D., and Mengin-Lecreulx, D. (2004) J. Biol. Chem. 279, 30106-30113). The enzyme function is to synthesize the carrier lipid undecaprenyl phosphate that is essential for the biosynthesis of peptidoglycan and other cell wall components. The inactivation of the chromosomal bacA gene was not lethal but led to a significant, but not total, depletion of undecaprenyl pyrophosphate phosphatase activity in E. coli membranes, suggesting that other(s) protein(s) should exist and account for the residual activity and viability of the mutant strain. Here we report that inactivation of two additional genes, ybjG and pgpB, is required to abolish growth of the bacA mutant strain. Overexpression of either of these genes, or of a fourth identified one, yeiU, is shown to result in bacitracin resistance and increased levels of undecaprenyl pyrophosphate phosphatase activity, as previously observed for bacA. A thermosensitive conditional triple mutant delta bacA,delta ybjG,delta pgpB in which the expression of bacA is impaired at 42 degrees C was constructed. This strain was shown to accumulate soluble peptidoglycan nucleotide precursors and to lyse when grown at the restrictive temperature, due to the depletion of the pool of undecaprenyl phosphate and consequent arrest of cell wall synthesis. This work provides evidence that two different classes of proteins exhibit undecaprenyl pyrophosphate phosphatase activity in E. coli and probably other bacterial species; they are the BacA enzyme and several members from a superfamily of phosphatases that, different from BacA, share in common a characteristic phosphatase sequence motif.
    Journal of Biological Chemistry 06/2005; 280(19):18689-95. DOI:10.1074/jbc.M412277200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bacA gene, the overexpression of which results in bacitracin resistance, was inactivated and shown to be non-essential for growth of Escherichia coli. It was proposed earlier that the bacA gene product may confer resistance to the antibiotic by phosphorylation of undecaprenol (Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., and Allen, C. M. (1983) J. Bacteriol. 175, 3784-3789). In the present work, this extremely hydrophobic membrane protein was overproduced and purified to near homogeneity. The analysis of its catalytic properties clearly demonstrated that the purified BacA protein exhibited undecaprenyl pyrophosphate phosphatase activity but not undecaprenol phosphokinase activity. This finding was perfectly consistent with the mechanism of action of bacitracin that consists in the sequestration of undecaprenyl pyrophosphate, the BacA enzyme substrate. The level of undecaprenyl pyrophosphate phosphatase was increased by 280-fold in cells carrying bacA on a multicopy expression plasmid. It was decreased by approximately 75% but was not completely abolished in a bacA disruption mutant, suggesting that BacA is the main E. coli undecaprenyl pyrophosphate phosphatase but that other protein(s) exhibiting such an activity should exist to account for the residual activity and viability of the mutant strain. This is the first gene encoding undecaprenyl pyrophosphate phosphatase identified to date. Considering its newly identified function, we propose to rename the bacA gene uppP.
    Journal of Biological Chemistry 08/2004; 279(29):30106-13. DOI:10.1074/jbc.M401701200 · 4.57 Impact Factor

Publication Stats

352 Citations
56.17 Total Impact Points


  • 2013
    • Unité Inserm U1077
      Caen, Lower Normandy, France
    • Institut de Génétique et de Biologie Moléculaire et Cellulaire
      Strasburg, Alsace, France
  • 2004-2012
    • Université Paris-Sud 11
      • Institut de Biochimie et de Biophysique Moléculaire et Cellulaire (IBBMC)
      Orsay, Île-de-France, France
  • 2011
    • Institut Pasteur
      • Department of Structural Biology and Chemistry
      Lutetia Parisorum, Île-de-France, France