Weimin Li

Chinese Academy of Agricultural Sciences, Peping, Beijing, China

Are you Weimin Li?

Claim your profile

Publications (8)24.63 Total impact

  • PLoS ONE 03/2015; 10(3):e0120791. DOI:10.1371/journal.pone.0120791 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we show that Tobacco mosaic virus (TMV), a positive-strand RNA virus known to end with 3׳ tRNA-like structures, does possess a small fraction of gRNA bearing polyadenylate tails. Particularly, many tails are at sites corresponding to the 3׳ end of near full length gRNA, and are composed of poly(A)-rich sequences containing the other nucleotides in addition to adenosine, resembling the degradation-stimulating poly(A) tails observed in all biological kingdoms. Further investigations demonstrate that these polyadenylated RNA species are not enriched in chloroplasts. Silencing of cpPNPase, a chloroplast-localized polynucleotide polymerase known to not only polymerize the poly(A)-rich tails but act as a 3׳ to 5׳ exoribonuclease, does not change the profile of polyadenylate tails associated with TMV RNA. Nevertheless, because similar tails were also detected in other phylogenetically distinct positive-strand RNA viruses lacking poly(A) tails, such kind of polyadenylation may reflect a common but as-yet-unknown interface between hosts and viruses.
    Virology 04/2014; s 454–455:1–10. DOI:10.1016/j.virol.2014.02.002 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering.
    PLoS ONE 12/2013; 8(12):e82844. DOI:10.1371/journal.pone.0082844 · 3.53 Impact Factor
  • Source
    Virology 02/2013; 436(1):244. DOI:10.1016/j.virol.2012.11.019 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10(-5). Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further functional characterization to dissect the molecular mechanisms and regulatory pathways of the HR-type of virus resistance in Chenopodium.
    PLoS ONE 09/2012; 7(9):e45953. DOI:10.1371/journal.pone.0045953 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rice stripe virus (RSV) pc4 has been determined as the viral movement protein (MP). In this study, the pc4 gene was cloned into a movement-deficient Tobacco mosaic virus (TMV). The resulting hybrid TMV-pc4, in addition to spreading cell to cell in Nicotiana tabacum, moved systemically and induced foliar necrosis in Nicotiana benthamiana, indicating novel functions of the RSV MP. A systematic alanine-scanning mutagenesis study established the region K(122)-D(258) of the pc4 substantially associated with cell-to-cell movement, and mutants by replacement of KGR(122-124), D(135), ED(170-171), ER(201-202), EFE(218-220) or ELD(256-258) with alanine(s) no longer moved cell to cell. However, only one amino acid group KGR(122-124) was linked with long-distance movement. The region D(17)-K(33) was recognized as a crucial domain for leaf necrosis response, and mutagenesis of DD(17-18) or RK(32-33) greatly attenuated necrosis. The overall data suggested manifold roles of the pc4 during the RSV infection in its experimental host N. benthamiana.
    Virology 04/2012; 425(2):113-21. DOI:10.1016/j.virol.2012.01.007 · 3.28 Impact Factor
  • Yongqiang Zhang · Chao Zhang · Weimin Li
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the potential role(s) of the nucleocapsid (N) protein of Tomato spotted wilt virus (TSWV), the open reading frame for the N protein was expressed from a Tobacco mosaic virus (TMV)-based vector encoding only the TMV replicase proteins. In the absence of other TSWV-encoded proteins, the transiently expressed N protein facilitated long-distance movement of the TMV-based hybrids in transgenic Nicotiana benthamiana [NB-MP(+)] expressing movement protein of TMV, thus providing the functional demonstration of the N protein in long-distance RNA movement. Removal of the N-terminal 39 amino acids (N-NΔ39), the C-terminal 26 amino acids (N-CΔ26) or both of them (N-NΔ39CΔ26) abolished the long-distance movement function, indicating the essential role of both N- and C-terminus. In contrast, alanine substitution of the phenylalanines at positions 242 and 246 (N242/262A), two crucial amino acids for homotypic interaction of the N protein, had little effect, suggesting that the N protein could function in long-distance movement in the form of monomers. In addition, both the wild type N and the alanine mutant N242/262A hardly induced local symptoms in NB-MP(+) plants and TMV-MP transgenic N. tabacum cv. Xanthi. The deletion mutants N-NΔ39, N-CΔ26 and N-NΔ39CΔ26, however, induced apparent symptoms of necrotic ringspots, necrosis or chlorotic spots in all inoculated leaves. On the basis of these findings, the potential role of N during the TSWV infection was discussed. To our knowledge, this is the first report that the N protein of an enveloped plant virus functioned in long-distance movement.
    Virus Research 01/2012; 163(1):246-53. DOI:10.1016/j.virusres.2011.10.006 · 2.83 Impact Factor
  • Weimin Li · Zhixing Wang · Shirong Jia
    [Show abstract] [Hide abstract]
    ABSTRACT: TheGbKTN1 gene was isolated from 10 DPA fiber cells ofGossypium barbadense using 5′RACE/3′RACE. Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame (ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF ofGbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that theGbKTN1 was a single copy gene inG. barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed thatGbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA ofGbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. TheGbKTN1 cDNA was transformed intoS. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressingGbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongationin vivo.
    Chinese Science Bulletin 12/2003; 49(1):23-28. DOI:10.1007/BF02901738 · 1.37 Impact Factor