Laura J Kopplin

Case Western Reserve University School of Medicine, Cleveland, Ohio, United States

Are you Laura J Kopplin?

Claim your profile

Publications (8)34.4 Total impact

  • Source
    Laura J Kopplin, Sudha K Iyengar, Jonathan H Lass
    Expert Review of Ophthalmology 01/2014; 7(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: To define the relationship between Fuchs endothelial corneal dystrophy (FECD) severity and central corneal thickness (CCT). We examined 1610 eyes from a subset of index cases, family members, and unrelated control subjects with normal corneas from the FECD Genetics Multi-Center Study. To estimate the association between FECD severity grade (7-point severity scale based on guttae confluence) and CCT measured by ultrasonographic pachymetry, a multivariable model was used that adjusted for eye, age, race, sex, history of glaucoma or ocular hypertension, diabetes mellitus, contact lens wear, intraocular pressure, and familial relationship to the index case. An interaction between FECD severity grade and edema (stromal or epithelial) on slitlamp examination findings was used to investigate whether the effect of FECD severity grade on CCT differed between those with and without edema. Average CCT was thicker in index cases for all FECD grades compared with unaffected controls (P ≤ .003) and in affected family members with an FECD grade of 4 or greater compared with unaffected family members (P ≤ .04). Similar results were observed for subjects without edema. Average CCT of index cases was greater than that of affected family members with grades 4, 5, and 6 FECD (P ≤ .02). Intraocular pressure was also associated with CCT (P = .01). An increase in CCT occurs with increasing severity of FECD, including at lower FECD grades in which clinically observable edema is not present. Monitoring CCT changes serially could be a more sensitive measure of disease progression with surgical therapeutic implications.
    Archives of ophthalmology 04/2012; 130(4):433-9. · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fuchs endothelial corneal dystrophy (FECD) is the most common late-onset, vision-threatening corneal dystrophy in the United States, affecting about 4% of the population. Advanced FECD involves a thickening of the cornea from stromal edema and changes in Descemet membrane. To understand the relationship between FECD and central corneal thickness (CCT), we characterized common genetic variation in COL8A2 and TCF4, genes previously implicated in CCT and/or FECD. Other genes previously associated with FECD (PITX2, ZEB1, SLC4A11), and genes only known to affect CCT (COL5A1, FOXO1, AVGR8, ZNF469) were also interrogated. FECD probands, relatives and controls were recruited from 32 clinical sites; a total of 532 cases and 204 controls were genotyped and tested for association of FECD case/control status, a 7-step FECD severity scale and CCT, adjusting for age and sex. Association of FECD grade with TCF4 was highly significant (OR  = 6.01 at rs613872; p = 4.8×10(-25)), and remained significant when adjusted for changes in CCT (OR  = 4.84; p = 2.2×10(-16)). Association of CCT with TCF4 was also significant (p = 6.1×10(-7)), but was abolished with adjustment for FECD grade (p = 0.92). After adjusting for FECD grade, markers in other genes examined were modestly associated (p ∼ 0.001) with FECD and/or CCT. Thus, common variants in TCF4 appear to influence FECD directly, and CCT secondarily via FECD. Additionally, changes in corneal thickness due to the effect of other loci may modify disease severity, age-at-onset, or other biomechanical characteristics.
    PLoS ONE 01/2012; 7(10):e46742. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To describe the methods for family and case-control recruitment for a multicenter genetic and associated heritability analyses of Fuchs endothelial corneal dystrophy (FECD). Twenty-nine enrolling sites with 62 trained investigators and coordinators gathered individual and family information, graded the phenotype, and collected blood and/or saliva for genetic analysis on all individuals with and without FECD. The degree of FECD was assessed in a 0 to 6 semiquantitative scale using standardized clinical methods with pathological verification of FECD on at least 1 member of each family. Central corneal thickness was measured by ultrasonic pachymetry. Three hundred twenty-two families with 330 affected sibling pairs with FECD were enrolled and included a total of 650 sibling pairs of all disease grades. Using the entire 7-step FECD grading scale or a dichotomous definition of severe disease, heritability was assessed in families via sib-sib correlations. Both binary indicators of severe disease and semiquantitative measures of disease severity were significantly heritable, with heritability estimates of 30% for severe disease, 37% to 39% for FECD score, and 47% for central corneal thickness. Genetic risk factors have a strong role in the severity of the FECD phenotype and corneal thickness. Genotyping this cohort with high-density genetic markers followed by appropriate statistical analyses should lead to novel loci for disease susceptibility.
    Cornea 10/2011; 31(1):26-35. · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10(-109)); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10(-9)) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number.
    PLoS ONE 01/2011; 6(10):e25598. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. We conducted a genome-wide association study in a series of families enriched for AMD and completed a meta-analysis of this new data with results from reanalysis of an existing study of a late-stage case-control cohort. We tested the top findings for replication in 1896 cases and 1866 controls and identified two novel genetic protective factors for AMD. In addition to the complement factor H (CFH) (P=2.3 × 10⁻⁶⁴) and age-related maculopathy susceptibility 2 (ARMS2) (P=1.2 × 10⁻⁶⁰) loci, we observed a protective effect at rs429608, an intronic SNP in SKIV2L (P=5.3 × 10⁻¹⁵), a gene near the complement component 2 (C2)/complement factor B (BF) locus, that indicates the protective effect may be mediated by variants other than the C2/BF variants previously studied. Haplotype analysis at this locus identified three protective haplotypes defined by the rs429608 protective allele. We also identified a new potentially protective effect at rs2679798 in MYRIP (P=2.9 × 10⁻⁴), a gene involved in retinal pigment epithelium melanosome trafficking. Interestingly, MYRIP was initially identified in the family-based scan and was confirmed in the case-control set. From these efforts, we report the identification of two novel protective factors for AMD and confirm the previously known associations at CFH, ARMS2 and C3.
    Genes and immunity 12/2010; 11(8):609-21. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10(-75)), ARMS2 (P < 10(-59)), C2/CFB (P < 10(-20)), C3 (P < 10(-9)), and CFI (P < 10(-6)). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 x 10(-11)), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 x 10(-7); CETP, P = 7.4 x 10(-7)) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c-associated alleles near LPL (P = 3.0 x 10(-3)) and ABCA1 (P = 5.6 x 10(-4)). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.
    Proceedings of the National Academy of Sciences 04/2010; 107(16):7401-6. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We observed that a naturally occurring mouse strain developed age-related retinal degeneration (arrd2). These mice had normal fundi, electroretinograms (ERGs) and retinal histology at 6 months of age; vessel attenuation, RPE atrophy and pigmentary abnormalities at 14 months, which progressed to complete loss of photoreceptors and extinguished ERG by 22 months. Genetic analysis revealed that the retinal degeneration in arrd2 segregates in an autosomal recessive manner and the disease gene localizes to mouse chromosome 10. A positional candidate cloning approach detected a nonsense mutation in the mouse double minute-1 gene (Mdm1), which results in the truncation of the putative protein from 718 amino acids to 398. We have identified a novel transcript of the Mdm1 gene, which is the predominant transcript in the retina. The Mdm1 transcript is localized to the nuclear layers of neural retina. Expression of Mdm1 in the retina increases steadily from post-natal day 30 to 1 year, and a high level of Mdm1 are subsequently maintained. The Mdm1 transcript was found to be significantly depleted in the retina of arrd2 mice and the transcript was observed to degrade by nonsense-mediated decay. These results indicate that the depletion of the Mdm1 transcript may underlie the mechanism leading to late-onset progressive retinal degeneration in arrd2 mice. Analysis of a cohort of patients with age-related macular degeneration (AMD) wherein the susceptibility locus maps to chromosome 12q, a region bearing the human ortholog to MDM1, did not reveal association between human MDM1 and AMD.
    Human Molecular Genetics 10/2008; 17(24):3929-41. · 7.69 Impact Factor

Publication Stats

237 Citations
34.40 Total Impact Points

Institutions

  • 2012
    • Case Western Reserve University School of Medicine
      Cleveland, Ohio, United States
  • 2008–2012
    • Case Western Reserve University
      • • Department of Medicine (University Hospitals Case Medical Center)
      • • Department of Epidemiology and Biostatistics
      • • Department of Genetics and Genome Sciences
      Cleveland, OH, United States