Are you Luis Javier Pérez-Sánchez?

Claim your profile

Publications (2)6.89 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite Fe deficiency and overload having been widely studied, no studies are available about the influence of milk consumption on antioxidant defence and lipid peroxidation during the course of these highly prevalent cases. The objective of the present study was to assess the influence of cow or goat milk-based diets, either with normal or Fe-overload, on antioxidant defence and lipid peroxidation in the liver, brain and erythrocytes of control and anaemic rats after chronic Fe repletion. Weanling male rats were randomly divided into two groups: a control group receiving a normal-Fe diet (45 mg/kg) and an anaemic group receiving a low-Fe diet (5 mg/kg) for 40 d. Control and anaemic rats were fed goat or cow milk-based diets, either with normal Fe or Fe-overload (450 mg/kg), for 30 or 50 d. Fe-deficiency anaemia did not have any effect on antioxidant enzymes or lipid peroxidation in the organs studied. During chronic Fe repletion, superoxide dismutase (SOD) activity was higher in the group of animals fed the cow milk diet compared with the group consuming goat milk. The slight modification of catalase and glutathione peroxidise activities in animals fed the cow milk-based diet reveals that these enzymes are unable to neutralise and scavenge the high generation of free radicals produced. The animals fed the cow milk diet showed higher rates of lipid peroxidation compared with those receiving the goat milk diet, which directly correlated with the increase in SOD activity. It was concluded that goat milk has positive effects on antioxidant defence, even in a situation of Fe overload, limiting lipid peroxidation.
    The British journal of nutrition 09/2011; 108(1):1-8. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite Fe deficiency having been widely studied, the sequence of events in its development still remains unclear. The aim of the present study was to elucidate the effects of nutritional Fe-deficiency development on haematological parameters, Fe bioavailability and the enzymes involved in oxidative defence in recently weaned male Wistar albino rats. Control (C) and Fe-deficient (ID) groups were fed the AIN-93 G diet with a normal Fe level (45 mg/kg diet) or with a low Fe level (5 mg/kg diet), respectively, for 20, 30 or 40 d. At day 20 serum Fe, serum ferritin and the saturation of transferrin decreased drastically, decreasing further in the course of Fe-deficiency development for the saturation of transferrin. The development of Fe deficiency did not affect plasma thiobarbituric acid-reactive substance production, or catalase (CAT) and glutathione peroxidase (GPx) activities in erythrocyte cytosol. Fe deficiency diminished hepatic Fe content and CAT and GPx activities in hepatic cytosol only at day the 20. However, in spite of the minor Fe deposits in the brain of ID rats, the CAT and GPx activities in the brain cytosolic fraction did not differ in any of the studied periods v. control rats. These results show that brain is a tissue that does not seem to depend on Fe levels for the maintenance of antioxidant defence mechanisms in the course of nutritional Fe deficiency.
    The British journal of nutrition 10/2010; 105(4):517-25. · 3.45 Impact Factor