Are you Wesley Alford?

Claim your profile

Publications (3)4.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Information theory has long been used to quantify interactions between two variables. With the rise of complex systems research, multivariate information measures have been increasingly used to investigate interactions between groups of three or more variables, often with an emphasis on so called synergistic and redundant interactions. While bivariate information measures are commonly agreed upon, the multivariate information measures in use today have been developed by many different groups, and differ in subtle, yet significant ways. Here, we will review these multivariate information measures with special emphasis paid to their relationship to synergy and redundancy, as well as examine the differences between these measures by applying them to several simple model systems. In addition to these systems, we will illustrate the usefulness of the information measures by analyzing neural spiking data from a dissociated culture through early stages of its development. Our aim is that this work will aid other researchers as they seek the best multivariate information measure for their specific research goals and system. Finally, we have made software available online which allows the user to calculate all of the information measures discussedwithin this paper.
    Journal of Computational Neuroscience 07/2013; · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the mechanisms of distributed computation in cellular automata requires techniques for characterizing the emergent structures that underlie information processing in such systems. Recently, techniques from information theory have been brought to bear on this problem. Building on this work, we utilize the new technique of partial information decomposition to show that previous information-theoretic measures can confound distinct sources of information. We then propose a new set of filters and demonstrate that they more cleanly separate out the background domains, particles, and collisions that are typically associated with information storage, transfer, and modification in cellular automata.
    Chaos (Woodbury, N.Y.) 09/2011; 21(3):037104. · 1.80 Impact Factor
  • Source
    Tessa Bent, Adam Buchwald, Wesley Alford