Jutta Vogelmann

French National Centre for Scientific Research, Lutetia Parisorum, Île-de-France, France

Are you Jutta Vogelmann?

Claim your profile

Publications (5)32.95 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin insulators are genetic elements implicated in the organization of chromatin and the regulation of transcription. In Drosophila, different insulator types were characterized by their locus-specific composition of insulator proteins and co-factors. Insulators mediate specific long-range DNA contacts required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these contacts is currently unknown. Here, we investigate the molecular associations between different components of insulator complexes (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel single-molecule assay to determine what factors are necessary and essential for the formation of long-range DNA interactions. We show that BEAF32 is able to bind DNA specifically and with high affinity, but not to bridge long-range interactions (LRI). In contrast, we show that CP190 and Chromator are able to mediate LRI between specifically-bound BEAF32 nucleoprotein complexes in vitro. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer, and its C-terminal domain interacts with several insulator binding proteins. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity (first layer proteins) whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts (second layer). This network of organized, multi-layer interactions could explain the different activities of insulators as chromatin barriers, enhancer blockers, and transcriptional regulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.
    PLoS Genetics 08/2014; 10(8):e1004544. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts. Indirect peaks depend on protein-protein interactions among multiple IBPs and their common cofactors, including CP190, as confirmed by high-resolution analyses of long-range contacts. Mutant IBPs unable to interact with CP190 impair long-range contacts as well as the expression of hundreds of distant genes that are specifically flanked by indirect peaks. Regulation of distant genes strongly correlates with RNAPII pausing, highlighting how this key transcriptional stage may trap insulator-based long-range interactions. Our data illustrate how indirect peaks may decipher gene regulatory networks through specific long-range interactions.
    Molecular cell 01/2014; · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic chromosomes are condensed into several hierarchical levels of complexity: DNA is wrapped around core histones to form nucleosomes, nucleosomes form a higher-order structure called chromatin, and chromatin is subsequently compartmentalized in part by the combination of multiple specific or unspecific long-range contacts. The conformation of chromatin at these three levels greatly influences DNA metabolism and transcription. One class of chromatin regulatory proteins called insulator factors may organize chromatin both locally, by setting up barriers between heterochromatin and euchromatin, and globally by establishing platforms for long-range interactions. Here, we review recent data revealing a global role of insulator proteins in the regulation of transcription through the formation of clusters of long-range interactions that impact different levels of chromatin organization.
    Nucleus (Austin, Texas) 09/2011; 2(5):358-69.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conjugation is a major route of horizontal gene transfer, the driving force in the evolution of bacterial genomes. Antibiotic producing soil bacteria of the genus Streptomyces transfer DNA in a unique process involving a single plasmid-encoded protein TraB and a double-stranded DNA molecule. However, the molecular function of TraB in directing DNA transfer from a donor into a recipient cell is unknown. Here, we show that TraB constitutes a novel conjugation system that is clearly distinguished from DNA transfer by a type IV secretion system. We demonstrate that TraB specifically recognizes and binds to repeated 8 bp motifs on the conjugative plasmid. The specific DNA recognition is mediated by helix α3 of the C-terminal winged-helix-turn-helix domain of TraB. We show that TraB assembles to a hexameric ring structure with a central ∼3.1 nm channel and forms pores in lipid bilayers. Structure, sequence similarity and DNA binding characteristics of TraB indicate that TraB is derived from an FtsK-like ancestor protein, suggesting that Streptomyces adapted the FtsK/SpoIIIE chromosome segregation system to transfer DNA between two distinct Streptomyces cells.
    The EMBO Journal 06/2011; 30(11):2246-54. · 9.82 Impact Factor
  • Source
    Edgardo Sepulveda, Jutta Vogelmann, Günther Muth
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome.
    Mobile genetic elements. 01/2011; 1(3):225-229.

Publication Stats

43 Citations
32.95 Total Impact Points

Institutions

  • 2014
    • French National Centre for Scientific Research
      • Centre de Biochimie Structurale
      Lutetia Parisorum, Île-de-France, France
  • 2011–2014
    • French Institute of Health and Medical Research
      • Centre de Biochimie Structurale U1054
      Lutetia Parisorum, Île-de-France, France
    • University of Tuebingen
      • Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT)
      Tübingen, Baden-Wuerttemberg, Germany