Are you Xin Li?

Claim your profile

Publications (3)9.37 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages rapidly engulf and remove apoptotic cells to limit the release of noxious cellular contents and to restrict autoimmune disease or inflammation. Recent developments reveal an important role in autophagy for clearance of apoptotic corpses. However, the relationship between autophagy and phagocytosis remains unclear. In this study we found that low doses of oridonin, an active diterpenoid, enhanced phagocytosis of apoptotic cells by human macrophage-like U937 cells, meanwhile it also induced autophagy in these U937 cells. Moreover, inhibition of extracellular signal-related kinase (ERK), nuclear factor-κB (NF-κB) and caspase-1 significantly suppressed oridonin-induced phagocytosis and autophagy. In addition, oridonin increased the protein levels of p-ERK, NF-κB, caspase-1 and pro IL-1β. Autophagic inhibitor 3-methyladenine (3-MA) decreased phagocytosis and the expression of ERK whereas increased the expression of NF-κB- and caspase-1-mediated IL-1β release. Beclin-1 (known as autophagic regulator) loss also led to the similar results. Pretreatment with autophagic agonist rapamycin caused opposite results. Autophagy-associated proteins, Beclin-1, LC3 and Atg4B, involved in this phagocytosis process. These results demonstrated that autophagy enhanced oridonin-induced phagocytosis through feedback regulation of ERK, NF-κB- and caspase-1-mediated IL-1β release.
    Archives of Biochemistry and Biophysics 12/2011; 518(1):31-41. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel self-assembled hyaluronic acid derivatives (HA-C(18)) grafted with hydrophobic octadecyl moiety and further dual targeting folic acid-conjugated HA-C(18) (FA-HA-C(18)) were synthesized. With the increase in the degree of substitution of octadecyl group from 12.7% to 19.3%, the critical micellar concentration of HA-C(18) copolymers decreased from 37.3 to 10.0 μg/mL. Paclitaxel (PTX) was successfully encapsulated into the hydrophobic cores of the HA-C(18) and FA-HA-C(18) micelles, with encapsulation efficiency as high as 97.3%. The physicochemical properties of the polymeric micelles were measured by DLS, TEM and DSC. Moreover, in vitro release behavior of PTX was investigated by dialysis bag method and PTX was released from micelles in a near zero-order sustained manner. In vitro antitumor activity tests suggested PTX-loaded HA-C(18) and FA-HA-C(18) micelles exhibited significantly higher cytotoxic activity against MCF-7 and A549 cells compared to Taxol at a lower PTX concentration. The cellular uptake experiments were conducted by quantitative assay of PTX cellular accumulation and confocal laser scanning microscopy imaging of coumarin-6 labeled HA-C(18) and FA-HA-C(18) micelles in folate receptor overexpressing MCF-7 cells. Folate and CD44 receptor competitive inhibition studies performed by fluorescence microscopy imaging suggested intracellular delivery of HA-C(18) and FA-HA-C(18) micelles were efficiently taken up via CD44 receptor-mediated endocytosis. The folate receptor-mediated endocytosis further enhanced internalized amounts of FA-HA-C(18) micelles in MCF-7 cells, as compared with HA-C(18) micelles. The internalization pathways of PTX-loaded HA-C(18) and FA-HA-C(18) micelles might include clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis. Therefore, the present study suggested that HA-C(18) and FA-HA-C(18) copolymers as biodegradable, biocompatible and cell-specific targetable nanostructure carriers, are promising nanosystems for cellular and intracellular targeting delivery of hydrophobic anticancer drugs.
    International Journal of Pharmaceutics 09/2011; 421(1):160-9. · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to prepare magnetic microspheres as a targeting drug delivery system and to specifically evaluate its targeting efficiency. The magnetic microspheres were prepared by emulsion cross-linking techniques. Targeting efficiency was specifically investigated by experiments of biodistribution on rats and histological study. Adriamycin hydrochloride (ADR)-loaded magnetic microspheres were successfully prepared with the mean diameter of 3.853 μm (± 1.484 μm), and had its speciality of superparamagnetism. The results of the targeting efficiency study showed that application of the external magnetic field significantly increased the ADR concentration from 40.28 μg/ml to 100.70 μg/ml at 10 min, 36.99 μg/ml to 91.16 μg/ml at 60 min, and 13.71 μg/ml to 28.30 μg/ml at 180 min in liver as the targeting tissue. The relative uptake efficiencies in liver by injection treatment of ADR magnetic microspheres with external magnetic field were 3.87, 5.59, and 3.34 at 10 min, 60 min, and 180 min after administration, respectively. In conclusion, distinguished targeting efficiency was displayed, which indicated that the magnetic microspheres could be applied as a novel targeting drug delivery system.
    Drug Delivery 11/2010; 18(2):166-72. · 2.02 Impact Factor