Duanqing Pei

Chinese Academy of Sciences, Peping, Beijing, China

Are you Duanqing Pei?

Claim your profile

Publications (120)794.67 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactivation of the pluripotency network during somatic cell reprogramming by exogenous transcription factors involves chromatin remodeling and the recruitment of RNA polymerase II (Pol II) to target loci. Here, we report that Pol II is engaged at pluripotency promoters in reprogramming but remains paused and inefficiently released. We also show that bromodomain-containing protein 4 (BRD4) stimulates productive transcriptional elongation of pluripotency genes by dissociating the pause release factor P-TEFb from an inactive complex containing HEXIM1. Consequently, BRD4 overexpression enhances reprogramming efficiency and HEXIM1 suppresses it, whereas Brd4 and Hexim1 knockdown do the opposite. We further demonstrate that the reprogramming factor KLF4 helps recruit P-TEFb to pluripotency promoters. Our work thus provides a mechanism for explaining the reactivation of pluripotency genes in reprogramming and unveils an unanticipated role for KLF4 in transcriptional pause release.
    Cell Stem Cell. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sorting nexin 10 (SNX10), the unique member of the SNX family having vacuolation activity in cells, was shown to be involved in the development of Autosomal Recessive Osteopetrosis (ARO) in recent genetic studies. However, the molecular mechanism of the disease-related mutations affecting the biological function of SNX10 is unclear. Here, we report the crystal structure of human SNX10 to 2.6 Å resolution. The structure reveals that SNX10 contains the extended PX domain we previously proposed. Our study provides the structural details of those disease-related mutations. Combined with the vacuolation study of those mutations, we found that Tyr32 and Arg51 are important for the protein stability and both play a critical role in vacuolation activity, while Arg16Leu may affect the function of SNX10 in osteoclast through protein-protein interactions. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 09/2014; · 3.34 Impact Factor
  • Xiaodong Shu, Duanqing Pei
    [Show abstract] [Hide abstract]
    ABSTRACT: The process that converts somatic cells to pluripotent ones has enormous potential not only as a tool to generate cells for disease therapy and modeling, but also as an experimental system to investigate fundamental biological questions. The discovery of mesenchymal-to-epithelial transitions at the initial phase of reprogramming provides a conceptual framework to understand reprogramming in a cellular context and it helps to resolve the mechanistic roles of the original Yamanaka factors as well as newly identified modulators of reprogramming. Emerging concept such as sequential EMT-MET in reprogramming further suggests the value of this model to the understanding of cell fate conversions. We highlight recent advances about the function and regulation of MET in reprogramming and discuss their potential implications here.
    Current opinion in genetics & development. 08/2014; 28C:32-37.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of neural lineages from human pluripotent stem cells (hPSCs) raises the hope of generating functional cells for the treatment of neural diseases. However, current protocols for differentiating hPSCs into neural lineages remain inefficient and largely variable between different hPSC lines. We report that microRNA 376c (miR-376c) significantly enhanced neural differentiation of hPSCs in a defined condition by suppressing SMAD4, the co-SMAD for TGF-β signaling. Downstream, SMAD4 directly bound and suppressed PAX6, the critical neural lineage specification factor. Interestingly, we also found that SMAD4 binds and suppresses miR-376c clusters in undifferentiated hESCs. In summary, our findings revealed a reciprocal antagonism between miR-376c and SMAD signaling that regulates cell fate during human neural differentiation.-Liu, J., Wang, L., Su, Z., Wu, W., Cai, X., Li, D., Hou, J., Pei, D., Pan, G. A reciprocal antagonism between miR-376c and TGF-β signaling regulates neural differentiation of hPSCs.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that the mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are basic mechanisms for cell fate conversion and may help us understand both physiologic and pathologic processes such as development and carcinogenesis. Here, we further suggest that mammalian cells fall into two grand divisions, mesenchymal or epithelial; interconversions between these two grand divisions through EMT/MET resonate with some ancient Chinese philosophic ideas.
    Cell research. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stem-cell-based tissue-engineering approaches are widely applied in establishing functional organs and tissues for regenerative medicine. Successful generation of induced pluripotent stem cells (iPS cells) and rapid progress of related technical platform provide great promise in the development of regenerative medicine, including organ regeneration. We have previously reported that iPS cells could be an appealing stem cells source contributing to tooth regeneration. In the present paper, we mainly review the application of iPS technology in dental bioengineering and discuss the challenges for iPS cells in the whole tooth regeneration.
    Stem cell reviews. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemophilia A (HA) is a severe, congenital bleeding disorder caused by the deficiency of clotting factor VIII (FVIII). For years, traditional laboratory animals have been used to study HA and its therapies, although animal models may not entirely mirror the human pathophysiology. Human induced pluripotent stem cells (iPSCs) can undergo unlimited self-renewal and differentiate into all cell types. This study aims to generate hemophilia A (HA) patient-specific iPSCs that differentiate into disease-affected hepatocyte cells. These hepatocytes are potentially useful for in vitro disease modeling and provide an applicable cell source for autologous cell therapy after genetic correction.
    Life sciences. 05/2014;
  • Source
    Xiang Li, Duanqing Pei, Hui Zheng
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell fate conversion is considered as the changing of one type of cells to another type including somatic cell reprogramming (de-differentiation), differentiation, and trans-differentiation. Epithelial and mesenchymal cells are two major types of cells and the transitions between these two cell states as epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have been observed during multiple cell fate conversions including embryonic development, tumor progression and somatic cell reprogramming. In addition, MET and sequential EMT-MET during the generation of induced pluripotent stem cells (iPSC) from fibroblasts have been reported recently. Such observation is consistent with multiple rounds of sequential EMT-MET during embryonic development which could be considered as a reversed process of reprogramming at least partially. Therefore in current review, we briefly discussed the potential roles played by EMT, MET, or even sequential EMT-MET during different kinds of cell fate conversions. We also provided some preliminary hypotheses on the mechanisms that connect cell state transitions and cell fate conversions based on results collected from cell cycle, epigenetic regulation, and stemness acquisition.
    Protein & Cell 05/2014; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tet-mediated DNA oxidation is a recently identified mammalian epigenetic modification, and its functional role in cell-fate transitions remains poorly understood. Here, we derive mouse embryonic fibroblasts (MEFs) deleted in all three Tet genes and examine their capacity for reprogramming into induced pluripotent stem cells (iPSCs). We show that Tet-deficient MEFs cannot be reprogrammed because of a block in the mesenchymal-to-epithelial transition (MET) step. Reprogramming of MEFs deficient in TDG is similarly impaired. The block in reprogramming is caused at least in part by defective activation of key miRNAs, which depends on oxidative demethylation promoted by Tet and TDG. Reintroduction of either the affected miRNAs or catalytically active Tet and TDG restores reprogramming in the knockout MEFs. Thus, oxidative demethylation to promote gene activation appears to be functionally required for reprogramming of fibroblasts to pluripotency. These findings provide mechanistic insight into the role of epigenetic barriers in cell-lineage conversion.
    Cell Stem Cell 04/2014; 14(4):512-522. · 25.32 Impact Factor
  • Source
  • Source
    Dataset: Zhou 2012
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Oct4 is a transcription factor that plays a major role for the preservation of the pluripotent state in embryonic stem cells as well as for efficient reprogramming of somatic cells to induced pluripotent stem cells (iPSC) or other progenitors. Protein-based reprogramming methods mainly rely on the addition of a fused cell penetrating peptide. This study describes that Oct4 inherently carries a protein transduction domain, which can translocate into human and mouse cells. Results: A 16 amino acid peptide representing the third helix of the human Oct4 homeodomain, referred to as Oct4 protein transduction domain (Oct4-PTD), can internalize in mammalian cells upon conjugation to a fluorescence moiety thereby acting as a cell penetrating peptide (CPP). The cellular distribution of Oct4-PTD shows diffuse cytosolic and nuclear staining, whereas penetratin is strictly localized to a punctuate pattern in the cytoplasm. By using a Cre/loxP-based reporter system, we show that this peptide also drives translocation of a functionally active Oct4-PTD-Cre-fusion protein. We further provide evidence for translocation of full length Oct4 into human and mouse cell lines without the addition of any kind of cationic fusion tag. Finally, physico-chemical properties of the novel CPP are characterized, showing that in contrast to penetratin a helical structure of Oct4-PTD is only observed if the FITC label is present on the N-terminus of the peptide. Conclusions: Oct4 is a key transcription factor in stem cell research and cellular reprogramming. Since it has been shown that recombinant Oct4 fused to a cationic fusion tag can drive generation of iPSCs, our finding might contribute to further development of protein-based methods to generate iPSCs. Moreover, our data support the idea that transcription factors might be part of an alternative paracrine signalling pathway, where the proteins are transferred to neighbouring cells thereby actively changing the behaviour of the recipient cell.
    New Biotechnology 01/2014; 3(2). · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells (iPSCs) derived from somatic cells have enormous potential for clinical applications. Notably, it was recently reported that reprogramming from somatic cells to iPSCs can induce genomic copy number variation (CNV), which is one of the major genetic causes of human diseases. However it was unclear if this genome instability is dependent on reprogramming methods and/or the genetic background of donor cells. Furthermore, genome-wide CNV analysis is technically challenging and CNV data need to be interpreted with care. In order to carefully investigate the possible CNV instability during somatic reprogramming, we performed genome-wide CNV analyses with 41 mouse iPSC lines generated from the same parental donor; therefore, the donor's genetic background can be controlled. Different reprogramming factor combinations and dosages were used for investigating potential method-dependent effects on genome integrity. We detected 63 iPSC CNVs using high-resolution comparative genomic hybridization. Intriguingly, CNV rates were negatively associated with the dosages of classic factor(s). Furthermore, the use of high-performance engineered factors led to less CNVs than the classic factor(s) of the same dosage. Our observations suggest that sufficient reprogramming force can protect the genome from CNV instability during the reprogramming process.
    BMC Genomics 01/2014; 15(1):79. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The breakthrough development of induced pluripotent stem cells (iPSCs) raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells. However, whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear. In this study, we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with autogenous peripheral blood mononuclear cells (PBMCs), we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation. However, a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs. Furthermore, no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells (CD3(+)CD8(-) T cells, CD3(+)CD8(+) T cells or CD3(-)CD56(+) NK cells) by NPCs in both PBMC and T cell co-culture systems. These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants, and thus set a base for further preclinical evaluation of human iPSCs.
    Science China. Life sciences 01/2014; · 2.02 Impact Factor
  • Xiaodong Shu, Duanqing Pei
    [Show abstract] [Hide abstract]
    ABSTRACT: The process that converts somatic cells to pluripotent ones has enormous potential not only as a tool to generate cells for disease therapy and modeling, but also as an experimental system to investigate fundamental biological questions. The discovery of mesenchymal-to-epithelial transitions at the initial phase of reprogramming provides a conceptual framework to understand reprogramming in a cellular context and it helps to resolve the mechanistic roles of the original Yamanaka factors as well as newly identified modulators of reprogramming. Emerging concept such as sequential EMT-MET in reprogramming further suggests the value of this model to the understanding of cell fate conversions. We highlight recent advances about the function and regulation of MET in reprogramming and discuss their potential implications here.
    Current Opinion in Genetics & Development. 01/2014; 28:32–37.
  • Nian Liu, Zhuo Li, Duanqing Pei, Xiaodong Shu
    [Show abstract] [Hide abstract]
    ABSTRACT: Zfyve9 is a FYVE domain protein first identified as a binding partner for SMAD2/3. In vitro studies indicate that it can function either positively or negatively in the TGF-beta signaling pathway depending on the cell lines used. However, the in vivo function of this protein remains to be investigated. We first analyzed the tissue distribution of zebrafish zfyve9a by in situ hybridization. To investigate the in vivo function of this gene, we performed morpholino mediated loss-of-function assays. We analyzed the expression patterns of liver (cp and fabp10a), pancreas (trypsin and insulin) or gut (fabp2) specific markers to determine whether the formation of these organs is affected by zfyve9a knockdown. We determined the specification of hepatoblast in the zfyve9a morphants (prox1a) and investigated the proliferation and survival of hepatic cells in the morphants by P-H3 staining and TUNEL assay respectively. We report here that zfyve9a is enriched in the zebrafish embryonic liver and required for hepatogenesis. Morpholino mediated knockdown of zfyve9a inhibits the formation of liver by day 4 while the other endoderm-derived organs appear unaffected. We demonstrated that the specification of hepatoblasts is normal in the zfyve9a morphants; however, the proliferation rate of these cells is reduced. Thus, our results reveal the liver-specific function of zfyve9a during early embryogenesis and indicate that the zfyve9a mediated signal is essential for the proliferation of hepatic cells during the expansion of liver bud.
    The International journal of developmental biology 11/2013; · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin C, a micronutrient known for its anti-scurvy activity in humans, promotes the generation of induced pluripotent stem cells (iPSCs) through the activity of histone demethylating dioxygenases. TET hydroxylases are also dioxygenases implicated in active DNA demethylation. Here we report that TET1 either positively or negatively regulates somatic cell reprogramming depending on the absence or presence of vitamin C. TET1 deficiency enhances reprogramming, and its overexpression impairs reprogramming in the context of vitamin C by modulating the obligatory mesenchymal-to-epithelial transition (MET). In the absence of vitamin C, TET1 promotes somatic cell reprogramming independent of MET. Consistently, TET1 regulates 5-hydroxymethylcytosine (5hmC) formation at loci critical for MET in a vitamin C-dependent fashion. Our findings suggest that vitamin C has a vital role in determining the biological outcome of TET1 function at the cellular level. Given its benefit to human health, vitamin C should be investigated further for its role in epigenetic regulation.
    Nature Genetics 10/2013; · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-thalassemia (β-Thal) is a group of life-threatening blood disorders caused by either point mutations or deletions of nucleotides in β-globin gene (HBB). It is estimated that 4.5% of the population in the world carry β-Thal mutants (1), posing a persistent threat to public health. The generation of patient specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations offer an ideal therapeutic solution to this problem. However, homologous recombination-based gene correction in human iPS cells remains largely inefficient. Here, we describe a robust process combining efficient generation of integration-free β-Thal iPSCs from patients' cells and TALEN-based universal correction of HBB mutations in situ. We generated integration-free and gene-corrected iPSC lines from two patients carrying different types of homozygous mutations and showed that these iPSCs are pluripotent and have normal karyotype. We showed that the correction process did not generate TALEN induced off-targeting mutations by sequencing. More importantly, the gene-corrected β-Thal iPS cell lines from each patient can be induced to differentiate into hematopoietic progenitor cells (HPCs) and then further to erythroblasts expressing normal β-globin. Our studies provide an efficient and universal strategy to correct different types of β-globin mutations in β-Thal iPSCs for disease modeling and applications.
    Journal of Biological Chemistry 10/2013; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CTCF is a ubiquitously expressed master weaver and plays multiple functions in the genome, including transcriptional activation/repression, chromatin insulation, imprinting, X chromosome inactivation and high order chromatin organization. It has been shown that CTCF facilitates the recruitment of UBF onto ribosomal DNA (rDNA) and regulates the local epigenetic state of rDNA repeats. However, the mechanism by which CTCF modulates rRNA gene transcription has not been well understood. Here we found that wild-type CTCF augmented pre-rRNA level, cell size and cell growth in cervical cancer cells. In contrast, RNA interference-mediated knockdown of CTCF reduced pre-rRNA transcription. CTCF positively regulates rRNA gene transcription in a RNA polymerase I dependent manner. We identified a RRGR motif as a putative Nucleolar Localization Sequence (NoLS) in C-terminal region of CTCF which is required for activating rRNA gene transcription. Using mass spectrometry, we identified SMC2 and SMC4, two subunits of condensin complexes which interact with CTCF. Condensin negatively regulates CTCF-mediated rRNA gene transcription. Knockdown of SMC2 expression significantly facilitates the loading of CTCF and UBF onto the rDNA locus, increases histone acetylation across the rDNA locus. Taken together, our study suggests that condensin competes with CTCF in binding to specific rDNA locus and negatively regulates CTCF-mediated rRNA gene transcription.
    Journal of Biological Chemistry 09/2013; 288(36):26067-26077. · 4.65 Impact Factor

Publication Stats

2k Citations
794.67 Total Impact Points

Institutions

  • 2009–2014
    • Chinese Academy of Sciences
      Peping, Beijing, China
  • 2013
    • Jilin University
      Yung-chi, Jilin Sheng, China
  • 2006–2013
    • Northeast Institute of Geography and Agroecology
      • • South China Institute for Stem Cell Biology and Regenerative Medicine
      • • Institute of Chemical Biology
      • • Guangzhou Institutes of Biomedicine and Health
      Beijing, Beijing Shi, China
  • 2012
    • University of Ottawa
      Ottawa, Ontario, Canada
  • 2003–2009
    • Tsinghua University
      • • School of Life Sciences
      • • School of Sciences
      Beijing, Beijing Shi, China
  • 2005
    • University of Minnesota Duluth
      Duluth, Minnesota, United States