Paul Sirajuddin

Johns Hopkins University, Baltimore, Maryland, United States

Are you Paul Sirajuddin?

Claim your profile

Publications (10)32.91 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.
    Oncotarget 05/2014; · 6.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA polymerase I (Pol I) is a dedicated polymerase that transcribes the 45S ribosomal (r) RNA precursor. The 45S rRNA precursor is subsequently processed into the mature 5.8S, 18S and 28S rRNAs and assembled into ribosomes in the nucleolus. Pol I activity is commonly deregulated in human cancers. Based on the discovery of lead molecule BMH-21, a series of pyridoquinazolinecarboxamides have been evaluated as inhibitors of Pol I and activators of the destruction of RPA194, the Pol I large catalytic subunit protein. Structure-activity relationships in assays of nucleolar stress and cell viability demonstrate key pharmacophores and their physicochemical properties required for potent activation of Pol I stress and cytotoxicity. This work identifies a set of bioactive compounds that potently cause RPA194 degradation that function in a tightly constrained chemical space. This work has yielded novel derivatives that contribute to the development of Pol I inhibitory cancer therapeutic strategies.
    Journal of medicinal chemistry. 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of new small molecule-based therapeutic drugs requires accurate quantification of drug bioavailability, biological activity and treatment efficacy. Rapidly measuring these endpoints is often hampered by the lack of efficient assay platforms with high sensitivity and specificity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and affected key metabolites in a mouse model of hedgehog-driven medulloblastoma.
    Cell cycle (Georgetown, Tex.) 09/2012; 11(20):3801-9. · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma is the most prevalent of childhood brain malignancies, constituting 25% of childhood brain tumors. Craniospinal radiotherapy is a standard of care, followed by a 12mo regimen of multi-agent chemotherapy. For children less than 3 y of age, irradiation is avoided due to its destructive effects on the developing nervous system. Long-term prognosis is worst for these youngest children and more effective treatment strategies with a better therapeutic index are needed. VMY-1-103, a novel dansylated analog of purvalanol B, was previously shown to inhibit cell cycle progression and proliferation in prostate and breast cancer cells more effectively than purvalanol B. In the current study, we have identified new mechanisms of action by which VMY-1-103 affected cellular proliferation in medulloblastoma cells. VMY-1-103, but not purvalanol B, significantly decreased the proportion of cells in S phase and increased the proportion of cells in G(2)/M. VMY-1-103 increased the sub G(1) fraction of apoptotic cells, induced PARP and caspase-3 cleavage and increased the levels of the Death Receptors DR4 and DR5, Bax and Bad while decreasing the number of viable cells, all supporting apoptosis as a mechanism of cell death. p21(CIP1/WAF1) levels were greatly suppressed. Importantly, we found that while both VMY and flavopiridol inhibited intracellular CDK1 catalytic activity, VMY-1-103 was unique in its ability to severely disrupt the mitotic spindle apparatus significantly delaying metaphase and disrupting mitosis. Our data suggest that VMY-1-103 possesses unique antiproliferative capabilities and that this compound may form the basis of a new candidate drug to treat medulloblastoma.
    Cancer biology & therapy 11/2011; 12(9):818-26. · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi.
    Environmental and Molecular Mutagenesis 01/2011; 52(1):58-68. · 3.71 Impact Factor
  • Source
    Lixin Mi, Paul Sirajuddin, Nanqin Gan, Xiantao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: N-Acetylcysteine (NAC) has been widely used in cell culture-based studies for the role of reactive oxygen species (ROS) generation in apoptosis induction by isothiocyanates (ITCs). Here we have demonstrated, using [(14)C]phenethyl ITC and [(14)C]sulforaphane, that NAC pretreatment significantly reduces ITC cellular uptake by conjugating with ITCs in the medium, suggesting that reduced uptake of ITCs, rather than the antioxidant activity of NAC itself, is responsible for the diminished downstream apoptotic effects. The study provides a cautionary note on the assay in studying mechanisms of apoptosis by ITCs and other electrophilic and thiol-reactive compounds.
    Analytical Biochemistry 10/2010; 405(2):269-71. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 μM, VMY-1-103 increased both the proportion of cells in G(1) and p21(CIP1) protein levels. At higher concentrations (5 μM or 10 μM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 μM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo.
    Cancer biology & therapy 08/2010; 10(4):320-5. · 3.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of metastatic cancer is associated with overexpression or downregulation of specific genes and cell regulatory pathways. Some of these genes and pathways may be involved in invasion and dissemination of tumor cells, while others may promote seeding, survival or growth of cells at specific distant sites. In this investigation, gene expression profiles of nonmetastasizing tumors generated by injecting mouse pheochromocytoma cells (MPCs) subcutaneously were compared to those of liver tumors generated by injecting the cells intravenously. Both were compared to the cultured parental cell line. Tumors in the liver have a route of spread, anatomical distribution, and growth environment similar to naturally metastasizing pheochromocytomas, while intravenous injection of cells bypasses the initial steps of metastasis occurring spontaneously from a primary tumor. Eight genes were upregulated in liver tumors, 15 in subcutaneous tumors and seven in both compared to the cultured cells. Using quantitative real-time PCR, expression of five genes (Metap2, Reck, S100a4, Timp2, and Timp3) was verified as significantly lower in liver tumors than in subcutaneous tumors. Downregulation of these genes has been previously been associated with malignancy of pheochromocytomas. These findings indicate that different microenvironments can differentially affect the expression of metastasis-related genes in pheochromocytomas, and that overexpression or underexpression of these genes need not be present when the tumor cells are initially disseminated. The hepatic localization of tumors formed by intravenously injected MPC cells and the tumors' gene expression profile resembling that of naturally occurring pheochromocytoma metastases support the use of this model to study pheochromocytoma metastasis.
    Molecular Carcinogenesis 05/2008; 47(4):245-51. · 4.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331microM BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N(2)deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10(8) nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10(8) nucleotides, with a median of 75/10(8) nucleotides. PAH-DNA adduct values above 150/10(8) nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear related to the increased risk of cervical precancer and cancer among carcinogenic HPV-infected smokers.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 12/2007; 624(1-2):114-23. · 3.90 Impact Factor
  • Paul Sirajuddin
    [Show abstract] [Hide abstract]
    ABSTRACT: Glial cell line-derived neurotrophic factor (Gdnf) is known for its neuroprotective role in dopaminergic neurons. In addition to its neurotrophic effects, Gdnf also plays a significant role in the development and maintenance of the kidneys, GI tract, heart, and brain. It has been found that Gdnf -/- newborn mice, which are unable to produce Gdnf, die at birth from renal agenesis and enteric neuron deficiency. Similarly Gdnf +/- mice, that are heterozygous with only one copy of the allele, show an accelerated decline in neuronal function leading to an earlier onset of age related brain disorders comparable to senile dementia, Alzheimer's disease, and Parkinson's disease when their memory was tested. Senile dementia is a life incapacitating disease that affects more than 4 million men and women between ages 60 and 90. Individuals with senile dementia live distraught lives for up to 8 to 9 years after diagnosis, though the disease can be present for more than 20 years. Using a Pavlovian fear-conditioning test, it was found that the memory of Gdnf +/- mice showed a deficiency in cognitive function at an age as early as one year. In comparing the mitochondria from the hippocampus of the brain, the number of mitochondria did not change. However, the size of the mitochondria increased, thus increasing the total area in both Gdnf +/- and wildtypes. Alternatively, the mitochondria functional change with age was also tested. The mitochondria membrane potential was not significantly different between the Gdnf +/- and wildtypes, while the complex IV activity showed a marked decline in Gdnf +/- mice with age and was significantly different between the two genotypes after eighteen months. These results suggest that the memory deficiency is related to the mitochondrial functional change with age.

Publication Stats

42 Citations
32.91 Total Impact Points

Institutions

  • 2014
    • Johns Hopkins University
      • Department of Radiation Oncology and Molecular Radiation Sciences
      Baltimore, Maryland, United States
  • 2012
    • Georgetown University
      Washington, Washington, D.C., United States
  • 2007–2008
    • National Cancer Institute (USA)
      • Center for Cancer Research
      Bethesda, MD, United States