Wei-ming Fu

Chinese Academy of Sciences, Peping, Beijing, China

Are you Wei-ming Fu?

Claim your profile

Publications (9)38.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Krüppel like factor 6 (KLF6) gene encodes multiple protein isoforms derived from alternative mRNA splicing, most of which are intimately involved in hepatocarcinogenesis and tumor progression. Recent bioinformatics analysis shows that alternative mRNA splicing of the KLF6 gene produces around 16 alternatively spliced variants with divergent or even opposing functions. Intriguingly, the full-length KLF6 (KLF6-FL) is a tumor suppressor gene frequently inactivated in liver cancer, whereas KLF6 splice variant 1 (KLF6-SV1) is an oncogenic isoform with antagonistic function against KLF6-FL. Compelling evidences indicate that miRNA, the small endogenous non-coding RNA (ncRNA), acts as a vital player in modulating a variety of cellular biological processes through targeting different mRNA regions of protein-coding genes. To identify the potential miRNAs specifically targeting KLF6-FL, we utilized bioinformatics analysis in combination with the luciferase reporter assays and screened out two miRNAs, namely miR-210 and miR-1301, specifically targeted the tumor suppressive KLF6-FL rather than the oncogenic KLF6-SV1. Our in vitro experiments demonstrated that stable expression of KLF6-FL inhibited cell proliferation, migration and angiogenesis while overexpression of miR-1301 promoted cell migration and angiogenesis. Further experiments demonstrated that miR-1301 was highly expressed in liver cancer cell lines as well as clinical specimens and we also identified the potential methylation and histone acetylation for miR-1301 gene. To sum up, our findings unveiled a novel molecular mechanism that specific miRNAs promoted tumorigenesis by targeting the tumor suppressive isoform KLF6-FL rather than its oncogenic isoform KLF6-SV1.
    RNA biology. 06/2014; 11(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a super-antigen, staphylococcal enterotoxin C2 (SEC2) stimulates the release of massive inflammatory cytokines such as interferon-gamma (IFN-γ), interleukin-1 (IL-1) and interleukin-2 (IL-2) which are documented to implicate osteoblast differentiation. In the present study, SEC2 was found to significantly improve the osteoblast differentiation by up-regulating BMP2 and Runx2/Cbfa1 expression. Interferon (IFN)-inducible gene IFI16, a co-activator of Runx2/Cbfa1, was also activated by SEC2 in the osteoblast differentiation. In addition, exogenous introduction of SEC2 stimulated OPG expression and suppressed RANKL, suggesting suppression of osteoclastogenesis in hMSCs. Therefore, our results displayed that SEC2 plays an important role in the commitment of MSC to the osteoblast and it might be a potential new therapeutic candidate for bone regeneration.
    Experimental Cell Research 12/2013; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study showed that the small molecule 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP) played an apoptosis-inducing role in hepatocellular carcinoma (HCC) through suppressing Hsp27 expression. However, the interaction between TDP and Hsp27 remains unclear. To investigate the functional association between TDP and Hsp27 protein in HCC, the recombinant Hsp27 protein was incubated with TDP at room temperature, and assayed by mass spectrum (MS) and natural electrophoresis. The results showed that TDP effectively stimulated Hsp27 to form aggregates ex vitro, thereby leading to suppressing its chaperone activity. Furthermore, we observed that these aggregates would be degraded through the ubiquitin-proteasome (UPS) pathway. Moreover, TDP could directly interact with Asp17 and Phe55 in chain C of Hsp27 by the bioinformatics prediction. In conclusion, our study showed that Hsp27 was a direct target of TDP in anti-cancer activity, which provided strong support for the clinical potential of TDP.
    Cell Biology International 10/2013; · 1.64 Impact Factor
  • Chinese medical journal 01/2013; 126(2):393-4. · 0.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is a global public health problem which causes approximately 500,000 deaths annually. Considering that the limited therapeutic options for HCC, novel therapeutic targets and drugs are urgently needed. In this study, we discovered that 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), isolated from the traditional Chinese medicinal herb, Garcinia oblongifolia, effectively inhibited cell growth and induced the caspase-dependent mitochondrial apoptosis in HCC. A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were performed to find the molecular targets of TDP in HCC cells. Eighteen proteins were identified as differently expressed, with Hsp27 protein being one of the most significantly down-regulated proteins induced by TDP. In addition, the following gain- and loss-of-function studies indicated that Hsp27 mediates mitochondrial apoptosis induced by TDP. Furthermore, a nude mice model also demonstrated the suppressive effect of TDP on HCC. Our study suggests that TDP plays apoptosis-inducing roles by strongly suppressing the Hsp27 expression that is specifically associated with the mitochondrial death of the caspase-dependent pathway. In conclusion, TDP may be a potential anti-cancer drug candidate, especially to cancers with an abnormally high expression of Hsp27.
    Journal of proteomics 06/2012; 75(15):4833-43. · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamboge is a traditional Chinese medicine and our previous study showed that gambogic acid and gambogenic acid suppress the proliferation of HCC cells. In the present study, another active component, 1,3,6,7-tetrahydroxyxanthone (TTA), was identified to effectively suppress HCC cell growth. In addition, our Hoechst-PI staining and flow cytometry analyses indicated that TTA induced apoptosis in HCC cells. In order to identify the targets of TTA in HCC cells, a two-dimensional gel electrophoresis was performed, and proteins in different expressions were identified by MALDA-TOF MS and MS/MS analyses. In summary, eighteen proteins with different expressions were identified in which twelve were up-regulated and six were down-regulated. Among them, the four most distinctively expressed proteins were further studied and validated by western blotting. The β-tubulin and translationally controlled tumor protein were decreased while the 14-3-3σ and P16 protein expressions were up-regulated. In addition, TTA suppressed tumorigenesis partially through P16-pRb signaling. 14-3-3σ silence reversed the suppressive effect of cell growth and apoptosis induced by introducing TTA. In conclusion, TTA effectively suppressed cell growth through, at least partially, up-regulation of P16 and 14-3-3σ.
    Apoptosis 05/2012; 17(8):842-51. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MiR-637 (microRNA-637) is a primate-specific miRNA belonging to the small noncoding RNA family, which represses gene regulation at the post-transcriptional expression level. Although it was discovered approximately 5 years ago, its biomedical significance and regulatory mechanism remain obscure. Our preliminary data showed that miR-637 was significantly suppressed in four HCC cell lines and, also, in most of the hepatocellular carcinoma (HCC) specimens, thereby suggesting that miR-637 would be a tumor suppressor in HCC. Simultaneously, the enforced overexpression of miR-637 dramatically inhibited cell growth and induced the apoptosis of HCC cells. The transcription factor, signal transducer and activator of transcription 3 (Stat3), is constitutively activated in multiple tumors, and aberrant Stat3 activation is linked to the promotion of growth and desensitization of apoptosis. Our study showed that Stat3 tyrosine 705 phosphorylation and several Stat3-regulated antiapoptotic genes were down-regulated in miR-637 mimics-transfected and Lv-miR637-infected HCC cells. In addition, miR-637 overexpression negatively regulated Stat3 phosphorylation by suppressing autocrine leukemia inhibitory factor (LIF) expression and exogenous LIF-triggered Stat3 activation and rescued cell growth in these cells. A nude mice model also demonstrated the above-described results, which were obtained from the cell model. Furthermore, we found that LIF was highly expressed in a large proportion of HCC specimens, and its expression was inversely associated with miR-637 expression. Conclusion: Our data indicate that miR-637 acted as a tumor suppressor in HCC, and the suppressive effect was mediated, at least in part, by the disruption of Stat3 activation. (HEPATOLOGY 2011)
    Hepatology 11/2011; 54(6):2137 - 2148. · 12.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteogenic differentiation of mesenchymal stem cells (MSCs) is a complex process, which is regulated by various factors including microRNAs. Our preliminary data showed that the expression of endogenous miR-20a was increased during the course of osteogenic differentiation. Simultaneously, the expression of osteoblast markers and regulators BMP2, BMP4, Runx2, Osx, OCN and OPN was also elevated whereas adipocyte markers PPARγ and osteoblast antagonist, Bambi and Crim1, were downregulated, thereby suggesting that miR-20a plays an important role in regulating osteoblast differentiation. To validate this hypothesis, we tested its effects on osteogenic differentiation by introducing miR-20a mimics and lentiviral-miR20a-expression vectors into hMSCs. We showed that miR-20a promoted osteogenic differentiation by the upregulation of BMP/Runx2 signaling. We performed bioinformatics analysis and predicted that PPARγ, Bambi and Crim1 would be potential targets of miR-20a. PPARγ is a negative regulator of BMP/Runx2 signaling whereas Bambi or Crim1 are antagonists of the BMP pathway. Furthermore, we confirmed that all these molecules were indeed the targets of miR-20a by luciferase reporter, quantitative RT-PCR and western blot assays. Similarly to miR-20a overexpression, the osteogenesis was enhanced by the silence of PPARγ, Bambi or Crim1 by specific siRNAs. Taken together, for the first time, we demonstrated that miR-20a promoted the osteogenesis of hMSCs in a co-regulatory pattern by targeting PPARγ, Bambi and Crim1, the negative regulators of BMP signaling.
    RNA biology 09/2011; 8(5):829-38. · 5.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone development is dynamically regulated by homeostasis, in which a balance between adipocytes and osteoblasts is maintained. Disruption of this differentiation balance leads to various bone-related metabolic diseases, including osteoporosis. In the present study, a primate-specific microRNA (miR-637) was found to be involved in the differentiation of human mesenchymal stem cells (hMSCs). Our preliminary data indicated that miR-637 suppressed the growth of hMSCs and induced S-phase arrest. Expression of miR-637 was increased during adipocyte differentiation (AD), whereas it was decreased during osteoblast differentiation (OS), which suggests miR-637 could act as a mediator of adipoosteogenic differentiation. Osterix (Osx), a significant transcription factor of osteoblasts, was shown to be a direct target of miR-637, which significantly enhanced AD and suppressed OS in hMSCs through direct suppression of Osx expression. Furthermore, miR-637 also significantly enhanced de novo adipogenesis in nude mice. In conclusion, our data indicated that the expression of miR-637 was indispensable for maintaining the balance of adipocytes and osteoblasts. Disruption of miR-637 expression patterns leads to irreversible damage to the balance of differentiation in bone marrow.
    Molecular biology of the cell 08/2011; 22(21):3955-61. · 5.98 Impact Factor

Publication Stats

84 Citations
38.78 Total Impact Points


  • 2013–2014
    • Chinese Academy of Sciences
      Peping, Beijing, China
  • 2011–2013
    • The Chinese University of Hong Kong
      • Stanley Ho Center for Emerging Infectious Diseases
      Hong Kong, Hong Kong
    • Third Military Medical University
      • Institute of Pathology and Southwest Cancer Center
      Ch’ung-ch’ing-shih, Chongqing Shi, China
    • Tsinghua University
      • School of Life Sciences
      Beijing, Beijing Shi, China