Qiu-Ming Liu

Ocean University of China, Tsingtao, Shandong Sheng, China

Are you Qiu-Ming Liu?

Claim your profile

Publications (6)19.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid differentiation factor 88 (MyD88) is an adapter protein involved in the interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR)-mediated activation of nuclear factor-kappaB (NF-κB). In this study, a full length cDNA of MyD88 was cloned from turbot, Scophthalmus maximus. It is 1619 bp in length and contains an 858-bp open reading frame that encodes a peptide of 285 amino acid residues. The putative turbot (Sm)MyD88 protein possesses a N-terminal death domain and a C-terminal Toll/IL-1 receptor (TIR) domain known to be important for the functions of MyD88 in mammals. Phylogenetic analysis grouped SmMyD88 with other fish MyD88s. SmMyD88 mRNA was ubiquitously expressed in all examined tissues of healthy turbots, with higher levels observed in immune-relevant organs. To explore the role of SmMyD88, its gene expression profile in response to stimulation of lipopolysaccharide (LPS), CpG oligodeoxynucleotide (CpG-ODN) or turbot reddish body iridovirus (TRBIV) was studied in the head kidney, spleen, gills and muscle over a 7-day time course. The results showed an up-regulation of SmMyD88 transcript levels by the three immunostimulants in all four examined tissues, with the induction by CpG-ODN strongest and initiated earliest and inducibility in the muscle very weak. Additionally, TRBIV challenge resulted in a quite high level of SmMyD88 expression in the spleen, whereas the two synthetic immunostimulants induced the higher levels in the head kidney. These data provide insights into the roles of SmMyD88 in the TLR/IL-1R signaling pathway of the innate immune system in turbot. Copyright © 2015. Published by Elsevier Ltd.
    Developmental and comparative immunology 05/2015; DOI:10.1016/j.dci.2015.05.013 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 22 (TLR22) exists exclusively in aquatic animals and recognizes double stranded RNA (dsRNA). In the present study, a tlr22 gene and its 5'-flanking sequence were cloned from turbot, Scophthalmus maximus, its immune responsive expression was subsequently studied in vivo. The turbot (sm)tlr22 gene spans over 5.6 kb with a structure of 4 exon-3 intron and encodes 962 amino acids. The deduced protein shows the highest sequence identity (76.7%) to Japanese flounder Tlr22 and possesses a signal peptide sequence, a leucine-rich repeat (LRR) domain composed of 27 LRR motifs, a transmembrane region and a Toll/interleukin-1 receptor (TIR) domain. Phylogenetic analysis grouped it with other teleost Tlr22s. The interferon-stimulated response element (ISRE) and signal transducer and activator of transcription (STAT) binding site important for the basal transcriptional activity of TLR3 were predicted in the 5'-flanking sequence of smtlr22 gene. Quantitative real-time PCR (qPCR) analysis demonstrated the constitutive expression of smtlr22 mRNA in all examined tissues with higher levels in the head kidney, kidney and spleen. Further, smtlr22 expression was significantly up-regulated following challenge with polyinosinic: polycytidylic acid (poly I:C), lipopolysaccharide (LPS) or turbot reddish body iridovirus (TRBIV) in the gills, head kidney, spleen and muscle, with maximum increases ranging from 2.56∼6.24 fold upon different immunostimulants and organs. These findings suggest a possible role of Smtlr22 in the immune responses to the infections of a broad range of pathogens that include DNA and RNA viruses and Gram-negative bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Fish &amp Shellfish Immunology 03/2015; 44(2). DOI:10.1016/j.fsi.2015.03.001 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 9 (IRF9) in mammals is known to be involved in antiviral response. In this study, we studied the structure, mRNA tissue distribution and regulation of IRF9 from Japanese flounder, Paralichthys olivaceus. The cDNA sequence of IRF9 is 3305 bp long, containing an open reading frame (ORF) of 1308 bp that encodes a peptide of 435 amino acids. The predicted protein sequence shares 33.7-72.0% identity to other fish IRF9s. Japanese flounder IRF9 possesses a DNA-binding domain (DBD), an IRF association domain (IAD), two nuclear localization signals (NLSs) and a proline-rich domain (PRD). The IRF9 transcripts were detectable in all examined tissues of healthy Japanese flounders, with higher levels in the head kidney, kidney, liver and spleen. The IRF9 mRNA levels were up-regulated in the gills, head kidney, spleen and muscle when challenged with polyinosinic:polycytidylic acid (poly I:C) or lymphocystis disease virus (LCDV). The up-regulations were stronger and arose earlier in the case of poly I:C treatment in most tested organs in a 7-day time course, with maximum increases ranging from 1.37∼8.59 fold and peak time points from 3 h to 3 d post injection depending on different organs, relative to those in the case of LCDV treatment which ranged from 1.32∼3.21 fold and from 18 h to 3 d post injection, respectively. The highest and earliest inductions were detected in the spleen in both challenge cases, while the inductions by LCDV in the muscle were quite faint. These results demonstrate a role of Japanese flounder IRF9 in the host's antiviral responses.
    Fish &amp Shellfish Immunology 05/2014; DOI:10.1016/j.fsi.2014.05.002 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs.
    Developmental and comparative immunology 06/2012; 38(2):377-82. DOI:10.1016/j.dci.2012.06.001 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 5 (IRF-5) plays a role both in the antiviral and inflammatory responses. In this study, we described the structure, mRNA tissue distribution and regulation of an IRF-5 gene from turbot, Scophthalmus maximus (SmIRF-5). The gene sequence of SmIRF-5 is 4275 bp long, composed of 9 exons and 8 introns similar to known IRF-5 genes of vertebrates, and encodes a peptide of 487 amino acids. The deduced protein sequence shares the highest identity of ∼60-70% with fish IRF-5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD) and a virus activated domain (VAD) known to be important for the functions of IRF-5 in mammals. Phylogenetic analysis grouped SmIRF-5 with other IRF-5s of vertebrates. SmIRF-5 transcripts were detectable in a wide range of tissue types of healthy fish with higher levels observed in the head kidney, kidney and spleen. The SmIRF-5 was transcriptionally up-regulated by turbot reddish body iridovirus (TRBIV) but not by polyinosinic:polycytidylic acid (poly I:C) in the gills, head kidney, spleen and muscle. Both the highest inducibility and earliest induction of SmIRF-5 expression were observed in the spleen where it reached a maximum level at day 1 after infection, prior to that of turbot Mx. These findings may help to better understand the roles of SmIRF-5 in antiviral response.
    Fish &amp Shellfish Immunology 10/2011; 32(1):211-8. DOI:10.1016/j.fsi.2011.10.021 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we described the structure, mRNA tissue distribution and regulation of an IRF-3 gene from turbot, Scophthalmus maximus (SmIRF-3). The gene sequence of SmIRF-3 is 6077 bp long, composed of 11 exons and 10 introns similar to known IRF-3 genes of fish, and encodes a peptide of 466 amino acids. The deduced protein sequence shares the highest identity of 56.0-81.2% with fish IRF-3 and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain (SRD) known to be important for the functions of IRF-3 in vertebrates. Phylogenetic analysis grouped SmIRF-3 with other IRF3s of vertebrates. SmIRF-3 transcripts were detectable in limited tissue types of healthy fish, with higher expression observed in head, kidney, spleen and kidney,. The SmIRF-3 was transcriptionally up-regulated by turbot reddish body iridovirus (TRBIV) and polyinosinic:polycytidylic acid (poly I:C) in the head kidney, spleen and gills, with showing a two wave induced expression during a 7-day time course in all cases. The highest inducibility and the likely earliest increase of SmIRF-3 expression were observed in the spleen, and poly I:C was a stronger inducer. In addition, the maximal expression level of SmIRF-3 arose prior to that of the Mx in all the cases.
    Fish &amp Shellfish Immunology 07/2011; 31(6):1224-31. DOI:10.1016/j.fsi.2011.07.011 · 3.03 Impact Factor