Natasja W M Ramnath

Erasmus MC, Rotterdam, South Holland, Netherlands

Are you Natasja W M Ramnath?

Claim your profile

Publications (3)11.78 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In this study we set out to investigate the clinically observed relationship between chronic obstructive pulmonary disease (COPD) and aortic aneurysms. We tested the hypothesis that an inherited deficiency of connective tissue might play a role in the combined development of pulmonary emphysema and vascular disease. Methods We first determined the prevalence of chronic obstructive pulmonary disease in a clinical cohort of aortic aneurysms patients and arterial occlusive disease patients. Subsequently, we used a combined approach comprising pathological, functional, molecular imaging, immunological and gene expression analysis to reveal the sequence of events that culminates in pulmonary emphysema in aneurysmal Fibulin-4 deficient (Fibulin-4R) mice. Results Here we show that COPD is significantly more prevalent in aneurysm patients compared to arterial occlusive disease patients, independent of smoking, other clinical risk factors and inflammation. In addition, we demonstrate that aneurysmal Fibulin-4R/R mice display severe developmental lung emphysema, whereas Fibulin-4+/R mice acquire alveolar breakdown with age and upon infectious stress. This vicious circle is further exacerbated by the diminished antiprotease capacity of the lungs and ultimately results in the development of pulmonary emphysema. Conclusions Our experimental data identify genetic susceptibility to extracellular matrix degradation and secondary inflammation as the common mechanisms in both COPD and aneurysm formation.
    PLoS ONE 09/2014; 9(9):e106054. DOI:10.1371/journal.pone.0106054 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT(1)) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4(+/R)) and 4-fold (homozygous Fibulin-4(R/R)) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT(1) receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4(R/R) mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT(1) receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease.
    PLoS ONE 08/2011; 6(8):e23411. DOI:10.1371/journal.pone.0023411 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We imaged the protease activity of matrix metalloproteinases (MMPs) upregulated during aneurysm formation, using protease-activatable near-infrared fluorescence probes. We tested whether these protease-activatable sensors can directly report the in vivo activity of the key biomarkers in aneurysm, using our genetically modified fibulin-4 mouse models for aneurysm formation. Mice homozygous for the fibulin-4 reduced-expression allele (fibulin-4(R/R)) show dilatation of the ascending aorta and a tortuous, stiffened aorta resulting from disorganized elastic fiber networks. Strikingly, even a moderate reduction in expression of fibulin-4 in the heterozygous fibulin-4(+/R) mice occasionally results in modest aneurysm formation. Aorta transcriptome and protein expression analysis of fibulin-4(+/R) and fibulin-4(R/R) animals identified excessive transforming growth factor-β signaling as the critical event in the pathogenesis of aneurysm formation. To determine whether a perturbed elastin lamellar structure arose from induction of transforming growth factor-β-regulated MMPs, we performed gelatin zymography and used a protease-activatable near-infrared fluorescence probe to monitor and quantify MMP upregulation in animals, using various in vivo optical imaging modules and coregistration of the fluorescence signal with CT images of the same animals. Gelatin zymography demonstrated a significant increase in the presence of the active form of MMP-9 in the aortic arch of fibulin-4(R/R) mice. In vivo analysis of MMP upregulation using the near-infrared fluorescence probe and subsequent isosurface concentration mapping from reconstructed tomographic images from fibulin-4(+/R) and fibulin-4(R/R) mice revealed a graded increase in activation of MMPs within the aneurysmal lesions. We aimed to develop molecular imaging procedures for faster, earlier, and easier recognition of aortic aneurysms. We show that in vivo coregistration of MMP activity by noninvasive tomographic imaging methods allows the detection of increased MMP activity, even before the aneurysm has actually formed.
    Circulation Cardiovascular Imaging 09/2010; 3(5):567-77. DOI:10.1161/CIRCIMAGING.109.933093 · 5.32 Impact Factor

Publication Stats

51 Citations
11.78 Total Impact Points


  • 2011-2014
    • Erasmus MC
      • Department of Vascular Surgery
      Rotterdam, South Holland, Netherlands
  • 2010
    • Erasmus Universiteit Rotterdam
      • Department of Cell Biology
      Rotterdam, South Holland, Netherlands