Muhammad Imran Arshad

Université de Rennes 1, Roazhon, Brittany, France

Are you Muhammad Imran Arshad?

Claim your profile

Publications (7)40.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The IL-33/ST2 axis is known to be involved in liver pathologies. Although, the IL-33 levels increased in sera of viral hepatitis patients in human, the cellular sources of IL-33 in viral hepatitis remained obscure. Therefore, we aimed to investigate the expression of IL-33 in murine fulminant hepatitis induced by a Toll like receptor (TLR3) viral mimetic, poly(I:C) or by pathogenic mouse hepatitis virus (L2-MHV3). The administration of poly(I:C) plus D-galactosamine (D-GalN) in mice led to acute liver injury associated with the induction of IL-33 expression in liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells (VEC), while the administration of poly(I:C) alone led to hepatocyte specific IL-33 expression in addition to vascular IL-33 expression. The hepatocyte-specific IL-33 expression was down-regulated in NK-depleted poly(I:C) treated mice suggesting a partial regulation of IL-33 by NK cells. The CD1d KO (NKT deficient) mice showed hepatoprotection against poly(I:C)-induced hepatitis in association with increased number of IL-33 expressing hepatocytes in CD1d KO mice than WT controls. These results suggest that hepatocyte-specific IL-33 expression in poly(I:C) induced liver injury was partially dependent of NK cells and with limited role of NKT cells. In parallel, the L2-MHV3 infection in mice induced fulminant hepatitis associated with up-regulated IL-33 expression as well as pro-inflammatory cytokine microenvironment in liver. The LSEC and VEC expressed inducible expression of IL-33 following L2-MHV3 infection but the hepatocyte-specific IL-33 expression was only evident between 24 to 32h of post infection. In conclusion, the alarmin cytokine IL-33 was over-expressed during fulminant hepatitis in mice with LSEC, VEC and hepatocytes as potential sources of IL-33.
    PLoS ONE 09/2013; 8(9):e74278. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-33, a member of the IL-1 cytokine family, positively correlates with acute hepatitis and chronic liver failure in mice and humans. IL-33 is expressed in hepatocytes and is regulated by natural killer T (NKT) cells during concanavalin A (ConA)-induced acute liver injury. Here, we investigated the molecular mechanisms underlying the expression of IL-33 during acute hepatitis. The expression of IL-33 and its regulation by death receptor pathways was investigated after the induction of ConA-acute hepatitis in wildtype (WT), perforin(-/-) , tumor necrosis factor related apoptosis inducing ligand (TRAIL)(-/-) , and NKT cell-deficient (CD1d(-/-) ) mice. In addition, we used a model of acute liver injury by administering Jo2/Fas-antibody or D-galactosamine-tumor necrosis factor alpha (TNFα) in WT mice. Finally, the effect of TRAIL on IL-33 expression was assessed in primary cultured murine hepatocytes. We show that IL-33 expression in hepatocytes is partially controlled by perforin during acute liver injury, but not by TNFα or Fas ligand (FasL). Interestingly, the expression of IL-33 in hepatocytes is blocked during ConA-acute hepatitis in TRAIL-deficient mice compared to WT mice. In contrast, administration of recombinant murine TRAIL associated with ConA-priming in CD1d-deficient mice or in vitro stimulation of murine hepatocytes by TRAIL but not by TNFα or Jo2 induced IL-33 expression in hepatocytes. The IL-33-deficient mice exhibited more severe ConA liver injury than WT controls, suggesting a protective effect of IL-33 in ConA-hepatitis. Conclusion: The expression of IL-33 during acute hepatitis is dependent on TRAIL, but not on FasL or TNFα. (HEPATOLOGY 2012).
    Hepatology 09/2012; · 11.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although TRAIL (tumor necrosis factor (TNF)-related apoptosis inducing ligand) is a well-known apoptosis inducer, we have previously demonstrated that acidic extracellular pH (pHe) switches TRAIL-induced apoptosis to regulated necrosis (or necroptosis) in human HT29 colon and HepG2 liver cancer cells. Here, we investigated the role of RIPK1 (receptor interacting protein kinase 1), RIPK3 and PARP-1 (poly (ADP-ribose) polymerase-1) in TRAIL-induced necroptosis in vitro and in concanavalin A (Con A)-induced murine hepatitis. Pretreatment of HT29 or HepG2 with pharmacological inhibitors of RIPK1 or PARP-1 (Nec-1 or PJ-34, respectively), or transient transfection with siRNAs against RIPK1 or RIPK3, inhibited both TRAIL-induced necroptosis and PARP-1-dependent intracellular ATP depletion demonstrating that RIPK1 and RIPK3 were involved upstream of PARP-1 activation and ATP depletion. In the mouse model of Con A-induced hepatitis, where death of mouse hepatocytes is dependent on TRAIL and NKT (Natural Killer T) cells, PARP-1 activity was positively correlated with liver injury and hepatitis was prevented both by Nec-1 or PJ-34. These data provide new insights into TRAIL-induced necroptosis with PARP-1 being active effector downstream of RIPK1/RIPK3 initiators and suggest that pharmacological inhibitors of RIPKs and PARP-1 could be new treatment options for immune-mediated hepatitis.Cell Death and Differentiation advance online publication, 20 July 2012; doi:10.1038/cdd.2012.90.
    Cell death and differentiation 07/2012; · 8.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 'Alarmins' are a group of proteins or molecules that are released from cells during cellular demise to alert the host immune system. Two of them, Interleukin-33 (IL-33) and high-mobility group box-1 (HMGB1), share many similarities of cellular localization, functions and involvement in various inflammatory pathologies including hepatitis. The expressions of IL-33 and HMGB1, and their receptors ST2 and receptor for advanced glycation end products (RAGE), are substantially up-regulated during acute and chronic hepatitis. Recent data evidence a possible protective role of IL-33/ST2 axis during liver injury. A contrast in expression of IL-33 and HMGB1 alarmins were associated with type of hepatocellular death mediated by immune cells or hepato-toxic agents. The massive release of active form of IL-33 from hepatocytes may affect the recruitment and activation of its ST2-positive target immune cells in the liver to confer its alarmin functions. This review highlights the emerging roles of alarmin proteins in various liver pathologies, by focusing on classical HMGB1 and a newly discovered alarmin, the IL-33.
    Liver international: official journal of the International Association for the Study of the Liver 04/2012; 32(8):1200-10. · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A cryosection of the liver taken from a mouse treated with concanavalin A to induce acute hepatitis features on this issue's cover; the section is stained with Hoechst, Texas red-phalloidin and anti-mIL-33 goat IgG/Cy5-conjugated secondary antibody, identifying the nuclei in blue, F-actin filaments in orange and IL-33-expressing cells in green respectively. The image is taken from the article by Arshad et al. (pp. 2341-2349) in which the induction of IL-33 expression in hepatocytes in concanavalin A-induced hepatitis is suggested to be driven by NKT cells.
    European Journal of Immunology 08/2011; 41(8). · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-33, a novel IL-1 family member, is crucially expressed and involved in pulmonary diseases, but its regulation in viral diseases such as influenza A virus (IAV) remains unclear. This study aimed to characterize the expression and release of IL-33 in lungs of IAV-infected mice in vivo and in murine respiratory epithelial cells (MLE-15) in vitro. Our results provide evidence of up-regulation of IL-33 mRNA in IAV-infected murine lungs, compared with noninfected control mice. The overexpression of IL-33 was positively correlated with a significant increase in mRNA encoding the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6, and was also associated with an increase in IFN-β mRNA. A profound overexpression of IL-33 protein was evident in IAV-infected murine lungs and bronchoalveolar lavages of influenza-infected mice, compared with low concentrations in naive lungs in vivo. Immunolocalization highlighted the cellular expression of IL-33 in alveolar epithelial and endothelial cells, along with increased infiltrate cells in virus-infected lungs. Further in vitro experiments showed an induction of IL-33 transcript-in MLE-15 cells and human epithelial cells (A549) infected with different strains of IAV in comparison with noninfected cells. In conclusion, our findings evidenced a profound expression of IL-33 in lungs during both in vivo and in vitro IAV infections, suggesting a role for IL-33 in virus-induced lung infections.
    American Journal of Respiratory Cell and Molecular Biology 06/2011; 45(6):1125-32. · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-33 (IL-33) is thought to be released during cellular death as an alarming cytokine during the acute phase of disease, but its regulation in vivo is poorly understood. We investigated the expression of IL-33 in two mouse models of acute hepatitis by administering either carbon tetrachloride (CCl(4) ) or concanavalin A (ConA). IL-33 was overexpressed in both models but with a stronger induction in ConA-induced hepatitis. IL-33 was weakly expressed in vascular and sinusoidal endothelial cells from normal liver and was clearly induced in CCl(4) -treated mice. Surprisingly, we found that hepatocytes strongly expressed IL-33 exclusively in the ConA model. CD1d knock-out mice, which are deficient in NKT cells and resistant to ConA-induced hepatitis, no longer expressed IL-33 in hepatocytes following ConA administration. Interestingly, invariant NKT (iNKT) cells adoptively transferred into ConA-treated CD1d KO mouse restored IL-33 expression in hepatocytes. This strongly suggests that NKT cells are responsible for the induction of IL-33 in hepatocytes.
    European Journal of Immunology 05/2011; 41(8):2341-8. · 4.52 Impact Factor

Publication Stats

88 Citations
40.56 Total Impact Points


  • 2011–2013
    • Université de Rennes 1
      • UMR S 1085 - Institut de recherche en santé, environnement et travail (IRSET)
      Roazhon, Brittany, France
    • French National Institute for Agricultural Research
      • Virologie et Immunologie Moléculaires (VIM)
      Paris, Ile-de-France, France
  • 2012
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France