Are you Min Liu?

Claim your profile

Publications (8)36.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague-Dawley rats had OVX or sham surgery. Two months later, sham controls received sc vehicle while OVX rats received vehicle (OVX-Veh) or Scl-Ab (25mg/kg) once weekly for 6 or 26weeks followed by necropsy (n=12/group). Terminal blood was collected for biochemistry, non-adherent marrow was harvested from femurs for ex vivo osteoclast formation assays, and vertebrae and tibiae were collected for dynamic histomorphometry and for mRNA analyses. Scl-Ab treatment led to progressively thicker but fewer trabeculae in the vertebra, leading to increased trabecular bone volume and reduced trabecular surfaces. Scl-Ab also increased cortical bone volume in the tibia, via early periosteal expansion and progressive endocortical contraction. Scl-Ab significantly reduced parameters of bone resorption at week 6 relative to OVX-Veh controls, including reduced serum TRACP-5b, reduced capacity of marrow cells to form osteoclasts ex vivo, and >80% reductions in vertebral trabecular and tibial endocortical eroded surfaces. At week 26, serum TRACP-5b and ex vivo osteoclast formation were no longer reduced in the Scl-Ab group, but eroded surfaces remained >80% lower than in OVX-Veh controls without evidence for altered skeletal mRNA expression of opg or rankl. Scl-Ab significantly increased parameters of bone formation at week 6 relative to OVX-Veh controls, including increases in serum P1NP and osteocalcin, and increased trabecular, endocortical and periosteal bone formation rates (BFRs). At week 26, surface-referent trabecular BFR remained significantly increased in the Scl-Ab group versus OVX-Veh controls, but after adjusting for a reduced extent of trabecular surfaces, overall (referent-independent) trabecular BFR was no longer significantly elevated. Similarly, serum P1NP and osteocalcin were no longer significantly increased in the Scl-Ab group at week 26. Tibial endocortical and periosteal BFR were increased at week 6 in the Scl-Ab group versus OVX-Veh controls, while at week 26 only endocortical BFR remained increased. The Scl-Ab group exhibited significant increments in skeletal mRNA expression of several osteocyte genes, with sost showing the greatest induction in both the tibia and vertebra. We propose that Scl-Ab administration, and/or the gains in bone volume that result, may have increased osteocytic expression of Scl as a possible means of regulating gains in bone mass.
    Bone 08/2014; · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reconstruction of large osseous defects due to periodontitis is a challenge in regenerative therapy. Sclerostin, secreted by osteocytes, is a key physiological inhibitor of osteogenesis. Pharmacologic inhibition of sclerostin using sclerostin neutralizing monoclonal antibody (Scl-Ab) thus increases bone formation, bone mass and bone strength in models of osteopenia and fracture repair. OBJECTIVE: This study assessed the therapeutic potential of Scl-Ab to stimulate alveolar bone regeneration following experimental periodontitis (EP). METHODS: Ligature-induced EP was induced in rats to generate localized alveolar bone defects. Following 4 weeks of disease induction, Scl-Ab (+EP) or vehicle (+/- EP) were systemically delivered, twice weekly for up to 6 wks to determine the ability of Scl-Ab to regenerate bone around tooth-supporting osseous defects. 3 and 6 wks after the initiation of Scl-Ab or vehicle treatment, femur and maxillary jaw bones were harvested for histology, histomorphometry, and micro-computed tomography (micro-CT) of linear alveolar bone loss (ABL) and volumetric measures of bone support, including bone volume fraction (BVF) and tissue mineral density (TMD). Serum was analyzed to examine bone turnover markers during disease and regenerative therapy. RESULTS: Vehicle + EP animals exhibited maxillary bone loss (BVF, TMD and ABL) at ligature removal and thereafter. 6 weeks of Scl-Ab significantly improved maxillary bone healing, as measured by BVF, TMD and ABL, when compared to vehicle + EP. After 6 weeks of treatment, BVF and TMD values in the Scl-Ab + EP group were similar to those of healthy controls. Serum analysis demonstrated higher levels of bone formation markers osteocalcin and PINP in Scl-Ab treatment groups. CONCLUSION: Scl-Ab restored alveolar bone mass following experimental periodontitis. These findings warrant further exploration of Scl-Ab therapy in this and other oral bone defect disease scenarios.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 05/2013; · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated that sclerostin blockade is anabolic for bone. This study examined whether systemic administration of sclerostin antibody would increase implant fixation and peri-implant bone volume in a rat model. Titanium cylinders were placed in the femoral medullary canal of ninety male Sprague-Dawley rats. One-half of the rats (n = 45) received murine sclerostin antibody (Scl-Ab, 25 mg/kg, twice weekly) and the other one-half (n = 45) received saline solution. Equal numbers of rats from both groups were sacrificed at two, four, or eight weeks after the implant surgery and the femora were examined by microcomputed tomography, mechanical pull-out testing, and histology. Fixation strength in the two groups was similar at two weeks but was 1.9-fold greater at four weeks (p = 0.024) and 2.2-fold greater at eight weeks (p < 0.001) in the rats treated with sclerostin antibody. At two weeks, antibody treatment led to increased cortical area, with later increases in cortical thickness and total cross-sectional area. Significant differences in peri-implant trabecular bone were not evident until eight weeks but included increased bone volume per total volume, bone structure that was more plate-like, and increased trabecular thickness and number. Changes in bone architecture in the intact contralateral femur tended to precede the peri-implant changes. The peri-implant bone properties accounted for 61% of the variance in implant fixation strength, 32% of the variance in stiffness, and 63% of the variance in energy to failure. The implant fixation strength at four weeks was approximately equivalent to the strength in the control group at eight weeks. Sclerostin antibody treatment accelerated and enhanced mechanical fixation of medullary implants in a rat model by increasing both cortical and trabecular bone volume. Sclerostin antibody treatment may be useful for improving implant fixation.
    The Journal of Bone and Joint Surgery 09/2012; 94(18):1670-80. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest a possible role for inhibitors of sclerostin such as sclerostin antibody (Scl-Ab) as an anabolic treatment for osteoporosis. Since Scl-Ab has also been shown to potentiate bone repair, we examined the effect of Scl-Ab treatment in a metaphyseal defect repair model in ovariectomized (OVX) rats. Four weeks after OVX or sham surgery, 3 mm circular defects were created bilaterally in the proximal tibia of all rats. After defect surgery, Saline or 25 mg/kg Scl-Ab was administered twice weekly for 3 weeks. Of note, healing was advanced in the 1-week post-defect surgery in OVX controls over Sham controls, with increases in bone volume and fluorochrome labeling observed. However, by week 2, OVX controls fell significantly behind in the repair response compared with Sham controls. Scl-Ab treatment significantly increased bone volume in the defect in OVX rats over the 3-week time course as examined by either microCT or histology. Significant increases in bone formation via fluorochrome labeling of the new bone were observed with Scl-Ab treatment, while osteoclast parameters were not different. With its powerful anabolic potential, bone-specific activity, and potential for low dosing frequency, Scl-Ab treatment could provide enhanced bone repair, particularly in situations of compromised bone repair such as osteoporotic bone.
    Journal of Orthopaedic Research 03/2012; 30(10):1541-8. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humans with inherited sclerostin deficiency have high bone mass. Targeted deletion of the sclerostin gene in mice (SOST-KO) causes increases in bone formation, bone mass and bone strength. Inhibition of sclerostin by a monoclonal antibody increases bone formation and enhances fracture healing in rodent and primate models. In this study, we describe the temporal progression of femoral fracture healing in SOST-KO mice compared with wild type (WT) control mice to further characterize the role of sclerostin in fracture healing. Sixty-seven male 9-10 week-old SOST-KO (N=37) and WT (N=30) mice underwent a closed femoral fracture. Weekly radiography was used to monitor the progress of healing. Histologic sections were used to characterize callus composition, evaluate callus bridging, and quantify lamellar bone formation on days 14 and 28. Densitometry and biomechanical testing were utilized to characterize bone mass and strength at the fractured and contralateral femurs on day 45. A significant improvement in time to radiographic healing (no discernible fracture line) was observed in SOST-KO mice, which corresponded to an increase in histologic bony bridging at 14 days (38% versus 0% in WT). Both genotypes appeared to be nearly fully bridged at 28 days post-fracture. The increased bridging at 14 days was associated with 97% greater bone area and 40% lower cartilage area in the callus of SOST-KO mice as compared to WT mice. Bone formation-related endpoints were higher in SOST-KO mice at both 14 and 28 days. At 45 days post-fracture, peak load and bone mass were significantly greater in the fractured femurs of SOST-KO mice as compared to WT mice. In conclusion, fractures in mice lacking sclerostin showed accelerated bridging, greater callus maturation, and increased bone formation and strength in the callus.
    Bone 08/2011; 49(6):1178-85. · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiological role of Dickkopf-1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1-Ab) that blocked Dkk1 binding to both low density lipoprotein receptor-related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1-Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 07/2011; 26(11):2610-21. · 6.04 Impact Factor
  • Bone 01/2010; 46. · 4.46 Impact Factor
  • Bone 01/2010; 46. · 4.46 Impact Factor