Melanie S Archer

Monash University (Australia), Melbourne, Victoria, Australia

Are you Melanie S Archer?

Claim your profile

Publications (5)9.77 Total impact

  • Source
    Kelly A George, Melanie S Archer, Tes Toop
    [show abstract] [hide abstract]
    ABSTRACT: The accuracy of minimum post-mortem interval (mPMI) estimates usually hinges upon the ability of forensic entomologists to predict the conditions under which calliphorids will colonise bodies. However, there can be delays between death and colonisation due to poorly understood abiotic and biotic factors, hence the need for a mPMI. To quantify the importance of various meteorological and light-level factors, beef liver baits were placed in the field (Victoria, Australia) on 88 randomly selected days over 3 years in all seasons and observed every 60-90min for evidence of colonisation. Baits were exposed during daylight, and the following parameters were measured: barometric pressure, light intensity, wind speed, ambient temperature, relative humidity and rainfall. Collected data were analysed using backward LR logistic regression to produce an equation of colonisation probability. This type of analysis removes factors with the least influence on colonisation in successive steps until all remaining variables significantly increase the accuracy of predicting colonisation presence or absence. Ambient temperature was a positive predictor variable (an increase in temperature increased the probability of calliphorid colonisation). Relative humidity was a negative predictor variable (an increase in humidity decreased the probability of calliphorid colonisation). Barometric pressure, light intensity, wind speed and rainfall did not enhance the accuracy of the probability model; however, analysis of species activity patterns suggests that heavy rainfall and strong wind speeds inhibit calliphorid colonisation.
    Forensic science international 06/2013; 229(1-3):100-107. · 2.10 Impact Factor
  • Kelly A George, Melanie S Archer, Tes Toop
    [show abstract] [hide abstract]
    ABSTRACT: Worldwide research into nocturnal colonization by blowflies has produced many contradictory findings, prompting investigation specific to southeastern Australia. Initial experiments showed that blowfly colonization begins shortly after sunrise and continues until sunset; nocturnal colonization never occurred. Colonization peaks occurred at mid-morning, midday, and in the hours preceding sunset. In an additional experiment, wild blowflies were captured and placed in cages with colonization medium supplied nocturnally. Colonization occurred on four of five nights, and Calliphora augur (Fabricius) (Diptera: Calliphoridae) was the main species colonizing baits nocturnally. Results suggest that colonization is most likely to occur during warm weather and when flies are able to walk or crawl to bait. In particular, blowflies trapped within a confined space (such as a room or car) with warmer-than-ambient temperature may be stimulated to colonize nearby remains. Entomologists should consider these findings when estimating minimum postmortem interval under these environmental conditions.
    Journal of Forensic Sciences 09/2012; · 1.24 Impact Factor
  • Source
    K A George, M S Archer, T Toop
    [show abstract] [hide abstract]
    ABSTRACT: Species colonization patterns on corpses and the frequency of carrion fly oviposition and larviposition are affected by decomposition stage and previous maggot colonization. This study investigated these effects on meat bait colonization by Victorian Diptera of forensic importance. Bait treatments were: 'aged' (aged for 4 days at 22 °C, allowing some decomposition); 'nutrient-depleted' [aged for 4 days at 22 °C with feeding Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae) larvae]; 'extract' (fresh bait mixed with liquid formed by feeding C. vicina larvae), and 'fresh' (untreated control bait). Statistical analysis (α = 0.05) revealed that colonization frequency differed significantly among treatments (Welch's F(3,18.83) = 4.66, P < 0.05). Post hoc tests showed that fresh and extract baits were colonized extensively throughout the experiment with no significant difference, whereas the colonization of nutrient-depleted baits was significantly lower. This suggests that larval digestive enzymes, larval excreta and cuticular hydrocarbons have less effect on colonizing Diptera than the nutritional content of meat. The colonization of aged baits did not differ significantly from that of fresh, extract or nutrient-depleted baits. A further experiment testing 'very aged' (aged for 8 days at 28 °C), 'larvae-added' (fresh bait with C. vicina larvae added before placement) and 'fresh' (untreated control) baits revealed that very aged baits were colonized significantly less frequently than either fresh or larvae-added baits (Welch's F(2, 6.17) = 17.40, P < 0.05).
    Medical and Veterinary Entomology 11/2011; 26(2):188-93. · 2.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Insect specimens collected from decomposing bodies enable forensic entomologists to estimate the minimum post-mortem interval (PMI). Drugs and toxins within a corpse may affect the development rate of insects that feed on them and it is vital to quantify these effects to accurately calculate minimum PMI. This study investigated the effects of morphine on growth rates of the native Australian blowfly, Calliphora stygia (Fabricius) (Diptera: Calliphoridae). Several morphine concentrations were incorporated into pet mince to simulate post-mortem concentrations in morphine, codeine and/or heroin-dosed corpses. There were four treatments for feeding larvae; T 1: control (no morphine); T 2: 2 microg/g morphine; T 3: 10 microg/g morphine; and T 4: 20 microg/g morphine. Ten replicates of 50 larvae were grown at 22 degrees C for each treatment and their development was compared at four comparison intervals; CI 1: 4-day-old larvae; CI 2: 7-day-old larvae; CI 3: pupae; and CI 4: adults. Length and width were measured for larvae and pupae, and costae and tibiae were measured for adults. Additionally, day of pupariation, day of adult eclosion, and survivorship were calculated for each replicate. The continued presence of morphine in meat was qualitatively verified using high-performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Growth rates of C. stygia fed on morphine-spiked mince did not differ significantly from those fed on control mince for any comparison interval or parameter measured. This suggests that C. stygia is a reliable model to use to accurately age a corpse containing morphine at any of the concentrations investigated.
    Forensic science international 09/2009; 193(1-3):21-5. · 2.10 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Selective determination of morphine in the larvae of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) using acidic potassium permanganate chemiluminescence detection coupled with flow injection analysis and high-performance liquid chromatography (HPLC) is described. Larvae of C. stygia were reared on minced meat substrates that had been spiked with varying concentrations of morphine. Morphine concentrations were chosen to reflect typical levels in human tissues from opiate overdose victims. After maturing on substrates, larvae were analyzed for the presence of morphine using chemiluminescence detection coupled to flow injection analysis and a rapid HPLC method. Analysis of the larval matrix by flow injection analysis with chemiluminescence detection indicated the presence of interferants capable of generating chemiluminescence. A rapid chromatographic separation with a monolithic column allowed selective determination of morphine in larvae using postcolumn chemiluminescence detection. Larvae of C. stygia reared on substrates containing morphine at concentrations of 500 and 1000 ng/g did not sequester morphine at detectable concentrations. Larvae reared on substrates containing morphine concentrations of 2500, 5000, and 10,000 ng/g tested positive for the drug at concentrations of 765, 2720, and 3010 ng/g, respectively.
    Journal of analytical toxicology 11/2006; 30(8):519-23. · 2.11 Impact Factor

Publication Stats

10 Citations
9.77 Total Impact Points


  • 2009–2013
    • Monash University (Australia)
      • Department of Forensic Medicine
      Melbourne, Victoria, Australia
  • 2006–2013
    • Deakin University
      • School of Life and Environmental Sciences
      Geelong, Victoria, Australia