Masayuki Shikamura

Foundation for Biomedical Research and Innovation, Kōbe, Hyōgo, Japan

Are you Masayuki Shikamura?

Claim your profile

Publications (3)16.88 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of wet-type, age-related macular degeneration (AMD). First, immunodeficient mouse strains (nude, SCID, NOD-SCID and NOG) were tested for HeLa cells' tumor-forming capacity by transplanting various cell doses subcutaneously with or without Matrigel. The 50% Tumor Producing Dose (TPD50 value) is the minimal dose of transplanted cells that generated tumors in 50% of animals. For HeLa cells, the TPD50 was the lowest when cells were embedded in Matrigel and transplanted into NOG mice (TPD50 = 10(1.1), n = 75). The TPD50 for undifferentiated iPSCs transplanted subcutaneously to NOG mice in Matrigel was 10(2.12); (n = 30). Based on these experiments, 1×10(6) iPSC-derived RPE were transplanted subcutaneously with Matrigel, and no tumor was found during 15 months of monitoring (n = 65). Next, to model clinical application, we assessed the tumor-forming potential of HeLa cells and iPSC 201B7 cells following subretinal transplantation of nude rats. The TPD50 for iPSCs was 10(4.73) (n = 20) and for HeLa cells 10(1.32) (n = 37) respectively. Next, the tumorigenicity of iPSC-derived RPE was tested in the subretinal space of nude rats by transplanting 0.8-1.5×10(4) iPSC-derived RPE in a collagen-lined (1 mm×1 mm) sheet. No tumor was found with iPSC-derived RPE sheets during 6-12 months of monitoring (n = 26). Considering the number of rodents used, the monitoring period, the sensitivity of detecting tumors via subcutaneous and subretinal administration routes and the incidence of tumor formation from the iPSC-derived RPE, we conclude that the tumorigenic potential of the iPSC-derived RPE was negligible.
    PLoS ONE 01/2014; 9(1):e85336. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD34+ cord blood cells can be reprogrammed effectively on dishes coated with a synthetic RGD motif polymer (PronectinF®) using a temperature sensitive Sendai virus vector (SeV TS7) carrying reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC. Dish-shaped human ES cell-like colonies emerged in serum-free primate ES cell medium (supplemented with bFGF) in 20% O2 culture conditions. The copy numbers of SeV TS7 vectors in the cytoplasm were drastically reduced by a temperature shift at 38°C for three days. Then, single cells from colonies were seeded on PronectinF®-coated 96-well plates and cultured under naïve culture conditions (N2B27-based medium supplemented with LIF, forskolin, a MAPK inhibitor, and a GSK inhibitor in 5% O2) for cloning purpose. Dome-shaped mouse ES cell-like colonies from single cells emerged on PronectinF®-coated dishes. These cells were collected and cultured again in primate ES cell medium supplemented with bFGF in 20% O2 and maintained on PronectinF®-coated dishes. Cells were assessed for reprogramming, including the absence of residual SeV and their potential for three germ layer differentiation. Generation of virus-free induced pluripotent stem cell (iPSC) clones from single cells under feeder-free conditions will solve some of the safety concerns related to use of xeno- or allogeneic-material in culture, and contribute to the characterization and the standardization of iPS cells intended for use in a clinical setting.
    PLoS ONE 06/2012; 7(6):e38389. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34(+) cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.
    Proceedings of the National Academy of Sciences 08/2011; 108(34):14234-9. · 9.81 Impact Factor

Publication Stats

91 Citations
16.88 Total Impact Points


  • 2011–2012
    • Foundation for Biomedical Research and Innovation
      Kōbe, Hyōgo, Japan