Heng Zhang

Chinese Academy of Sciences, Peping, Beijing, China

Are you Heng Zhang?

Claim your profile

Publications (17)61.82 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A diverse superfamily of phospholipases consisting of the type VI lipase effectors Tle1-Tle5 secreted by the bacterial type VI secretion system (T6SS) have recently been identified as antibacterial effectors that hydrolyze membrane phospholipids. These effectors show no significant homology to known lipases, and their mechanism of membrane targeting and hydrolysis of phospholipids remains unknown. Here, the crystal structure of Tle1 (∼96.5 kDa) from Pseudomonas aeruginosa refined to 2.0 Å resolution is reported, representing the first structure of this superfamily. Its overall structure can be divided into two distinct parts, the phospholipase catalytic module and the putative membrane-anchoring module; this arrangement has not previously been observed in known lipase structures. The phospholipase catalytic module has a canonical α/β-hydrolase fold and mutation of any residue in the Ser-Asp-His catalytic triad abolishes its toxicity. The putative membrane-anchoring module adopts an open conformation composed of three amphipathic domains, and its partial folds are similar to those of several periplasmic or membrane proteins. A cell-toxicity assay revealed that the putative membrane-anchoring module is critical to Tle1 antibacterial activity. A molecular-dynamics (MD) simulation system in which the putative membrane-anchoring module embedded into a bilayer was stable over 50 ns. These structure-function studies provide insight into the hydrolysis and membrane-targeting process of the unique phospholipase Tle1.
    Acta Crystallographica Section D Biological Crystallography 08/2014; 70(Pt 8):2175-2185. · 12.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The putative protein PA5089 from Pseudomonas aeruginosa has recently been identified as a Tle5 phospholipase effector from a type VI secretion system (T6SS), and its toxicity can be neutralized by the cognate immunity protein Tli5 (PA5088). Here, the expression, purification, crystallization and preliminary crystallographic analysis of PA5088 are reported. X-ray diffraction data were collected from selenomethionine-derivatized PA5088 crystals to a resolution of 2.55 Å. The crystals belonged to space group P21, with unit-cell parameters a = 64.002, b = 104.744, c = 90.168 Å.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 07/2014; 70(Pt 7):903-5. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial type VI secretion system (T6SS) is used by donor cells to inject toxic effectors into receptor cells. The donor cells produce the corresponding immunity proteins to protect themselves against the effector proteins, thereby preventing their self-intoxication. Recently, the C-terminal domain of VgrG3 was identified as a T6SS effector. Information on the molecular mechanism of VgrG3 and its immunity protein TsaB has been lacking. Here, we determined the crystal structures of native TsaB and the VgrG3C-TsaB complex. VgrG3C adopts a canonical phage-T4-lysozyme-like fold. TsaB interacts with VgrG3C through molecular mimicry, and inserts into the VgrG3C pocket.
    FEBS letters 04/2014; · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial type VI secretion system (T6SS), a dynamic organelle, participates in microbial competition by transporting toxic effector molecules to neighbouring cells to kill competitors. TsiV3, a recently defined T6SS immunity protein in Vibrio cholerae, possesses self-protection against killing by T6SS predatory cells by directly binding to and inhibiting their effector protein VgrG-3. Structural information about TsiV3 could help to illuminate its specific mechanism. In this study, TsiV3 from V. cholerae was cloned, expressed and crystallized and single-crystal X-ray diffraction data sets were collected to a resolution of 2.55 Å. Specifically, the crystal belonged to space group P212121, with unit-cell parameters a = 73.3, b = 78.12, c = 106.18 Å. Matthews coefficient calculations indicated that the crystal may contain six TsiV3 molecules in one asymmetric unit, with a VM value of 2.25 Å(3) Da(-1) and a solvent content of 45.42%.
    Acta crystallographica. Section F, Structural biology communications. 03/2014; 70(Pt 3):335-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli RnlA-RnlB is a newly identified toxin-antitoxin (TA) system that plays a role in bacteriophage resistance. RnlA functions as a toxin with mRNA endoribonuclease activity and the cognate antitoxin RnlB inhibits RnlA toxicity in E. coli cells. Interestingly, T4 phage encodes the antitoxin Dmd, which acts against RnlA to promote its own propagation, suggesting that RnlA-Dmd represents a novel TA system. Here, we have determined the crystal structure of RnlA refined to 2.10 Å. RnlA is composed of three independent domains: NTD (N-terminal domain), NRD (N repeated domain) and DBD (Dmd binding domain), which is an organization not previously observed among known toxin structures. Small-angle X-ray scattering (SAXS) analysis revealed that RnlA forms a dimer in solution via interactions between the DBDs from both monomers. The in vitro and in vivo functional studies showed that among the three domains, only the DBD is responsible for recognition and inhibition by Dmd and subcellular location of RnlA. In particular, the helix located at the C-terminus of DBD plays a vital role in binding Dmd. Our comprehensive studies reveal the key region responsible for RnlA toxicity and provide novel insights into its structure-function relationship.
    Molecular Microbiology 09/2013; · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recently described type VI secretion system (T6SS) acts as a needle that punctures the membrane of the target cells to deliver effector proteins. Type VI amidase effectors can be classified into four divergent families (Tae1-4). These effectors are secreted into the periplasmic space of neighboring cells via the T6SS and subsequently rupture peptidoglycan. However, the donor cells are protected from damage because of the presence of their cognate immunity proteins (Tai1-4). Here, we describe the structure of Tae3 in complex with Tai3. The Tae3-Tai3 complex exists as a stable heterohexamer, which is composed of two Tae3 molecules and two Tai3 homodimers (Tae3-Tai34-Tae3). Tae3 shares a common NlpC/P60 fold, which consists of an Nt-subdomain and a Ct-subdomain. Structural analysis indicates that two unique loops around the catalytic cleft adopt a closed conformation, resulting in a narrow and extended groove involved in the binding of the substrate. The inhibition of Tae3 is attributed to the insertion of the Ω-loop of Tai3 into the catalytic groove. Furthermore, a cell viability assay confirmed that a conserved motif (Q-D-X) in Tai3 members may play a key role in the inhibition process. Taken together, our studies have revealed a novel inhibition mechanism and provide insights into the role played by T6SS in interspecific competition.
    Biochemical Journal 06/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RlmM is an AdoMet-dependent methyltransferase that is responsible for 2'-O-methylation of C2498 in the peptidyl-transferase loop of bacterial 23S rRNA. This modification occurs before assembly of the 50S ribosomal subunit, and lack of C2498 methylation can cause a slight reduction in bacterial fitness. Here, the purification and crystallization of RlmM from Escherichia coli as well as its preliminary crystallographic analysis are presented. Cocrystallization of RlmM with AdoMet was carried out and X-ray diffraction data were collected to a resolution of 2.30 Å on beamline BL17U at the SSRF. However, electron density for AdoMet cannot be observed by comprehensive crystallographic analysis, indicating that it is not bound by RlmM during the cocrystallization process. The structure was solved by molecular replacement and refinement is in progress. The crystal contained one molecule in the asymmetric unit and belonged to space group P21, with unit-cell parameters a = 56.07, b = 59.38, c = 54.35 Å, β = 94.84°, which differs from the P31 or P3121 space groups of previously reported RlmM structures (PDB entries 4auk, 4atn and 4b17).
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 06/2013; 69(Pt 6):640-2. · 0.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The type VI secretion system (T6SS), a multi-subunit needle-like apparatus, has been recently found to play a role in interspecies interactions. The Gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both Enterobacter cloacae and Salmonella typhimurium. Tae4 acts as a DL-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small-angle X-ray scattering (SAXS) study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer which consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop anti-pathogen drugs.
    Journal of Biological Chemistry 01/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics. © 2012 IUBMB Life, 65(1):50-57, 2013.
    International Union of Biochemistry and Molecular Biology Life 01/2013; 65(1):50-7. · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Gram-negative bacteria type VI secretion system (T6SS) has been found to play an important role in interbacterial competition, biofilm formation and many other virulence-related processes. The bacteria harboring T6SS inject the effectors into their recipient's cytoplasm or periplasm to kill them and meanwhile, to avoid inhibiting itself, the cognate immunity proteins were produced to acts as the effector inhibitor. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity (EI) pairs. We have recently solved the structures of StTae4-Tai4 and EcTae4-Tai4 complexes from the human pathogens Salmonella typhimurium and Enterobacter cloacae, respectively. It is very interesting and important to discover whether there is cross-neutralization between St- and EcTai4 and whether their effector inhibition mechanism is conserved. Here, we determined the crystal structure of StTae4 in complex with EcTai4. The solution conformation study revealed it is a compact heterotetramer that consists of an EcTai4 homodimer binding two StTae4 molecules in solution, different from that in crystal. A remarkable shift can be observed in both the flexible winding loop of StTae4 and protruding loop of EcTai4 and disulfide bonds are formed to stabilize their overall conformations. The in vitro and in vivo interactions studies showed EcTai4 can efficiently rescue the cells from the toxicity of its cognate effectors StTae4, but can not neutralize the toxic activities of the effectors from other families. These findings provide clear structural evidence to support the previous observation of cross-immunity within T6SS families and provide a basis for understanding their important roles in polymicrobial environments.
    PLoS ONE 01/2013; 8(9):e73782. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RsmE is the founding member of a new RNA methyltransferase (MTase) family responsible for methylation of U1498 in 16S ribosomal RNA in Escherichia coli. It is well conserved across bacteria and plants and may play an important role in ribosomal intersubunit communication. The crystal structure in monomer showed that it consists of two distinct but structurally related domains: the PUA (pseudouridine synthases and archaeosine-specific transglycosylases)-like RNA recognition and binding domain and the conserved MTase domain with a deep trefoil knot. Analysis of small-angle X-ray scattering data revealed that RsmE forms a flexible dimeric conformation that may be essential for substrate binding. The S-adenosyl-l-methionine (AdoMet)-binding characteristic determined by isothermal titration calorimetry suggested that there is only one AdoMet molecule bound in the subunit of the homodimer. In vitro methylation assay of the mutants based on the RsmE-AdoMet-uridylic acid complex model showed key residues involved in substrate binding and catalysis. Comprehensive comparisons of RsmE with closely related MTases, combined with the biochemical experiments, indicated that the MTase domain of one subunit in dimeric RsmE is responsible for binding of one AdoMet molecule and catalytic process while the PUA-like domain in the other subunit is mainly responsible for recognition of one substrate molecule (the ribosomal RNA fragment and ribosomal protein complex). The methylation process is required by collaboration of both subunits, and dimerization is functionally critical for catalysis. In general, our study provides new information on the structure-function relationship of RsmE and thereby suggests a novel catalytic mechanism.
    Journal of Molecular Biology 08/2012; 423(4):576-89. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RlmG is a specific AdoMet-dependent methyltransferase (MTase) responsible for N²-methylation of G1835 in 23S rRNA of Escherichia coli. Methylation of m²G1835 specifically enhances association of ribosomal subunits and provides a significant advantage for bacteria in osmotic and oxidative stress. Here, the crystal structure of RlmG in complex with AdoMet and its structure in solution were determined. The structure of RlmG is similar to that of the MTase RsmC, consisting of two homologous domains: the N-terminal domain (NTD) in the recognition and binding of the substrate, and the C-terminal domain (CTD) in AdoMet-binding and the catalytic process. However, there are distinct positively charged protuberances and a distribution of conserved residues contributing to the charged surface patch, especially in the NTD of RlmG for direct binding of protein-free rRNA. The RNA-binding properties of the NTD and CTD characterized by both gel electrophoresis mobility shift assays and isothermal titration calorimetry showed that NTD could bind RNA independently and RNA binding was achieved by the NTD, accomplished by a coordinating role of the CTD. The model of the RlmG-AdoMet-RNA complex suggested that RlmG may unfold its substrate RNA in the positively charged cleft between the NTD and CTD, and then G1835 disengages from its Watson-Crick pairing with C1905 and flips out to insert into the active site. Our structure and biochemical studies provide novel insights into the catalytic mechanism of G1835 methylation.
    RNA 07/2012; 18(8):1500-9. · 5.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The type VI secretion systems (T6SS) have emerging roles in interspecies competition. In order to have an advantage in defense against other organisms, this system in Pseudomonas aeruginosa delivers a peptidoglycan amidase (Tse1) to the periplasmic space of a competitor. An immune protein (Tsi1) is also produced by the bacterium to protect itself from damage caused by Tse1. Tsi1 directly interacts with Tse1. We report that the crystal structure of Tse1 displays a common CHAP protein fold. Strikingly, our structures showed that the third residue in the catalytic triad may be novel as this residue type has not been observed previously.
    FEBS letters 06/2012; 586(19):3193-9. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RsmH is a specific AdoMet-dependent methyltransferase (MTase) responsible for N(4)-methylation of C1402 in 16S rRNA and conserved in almost all species of bacteria. The methylcytidine interacts with the P-site codon of the mRNA and increases ribosomal decoding fidelity. In this study, high resolution crystal structure (2.25Å) of Escherichia coli RsmH in complex with AdoMet and cytidine (the putative rRNA binding site) was determined. The structural analysis demonstrated that the complex consists of two distinct but structurally related domains: the typical MTase domain and the putative substrate recognition and binding domain. A deep pocket was found in the conserved AdoMet binding domain. It was also found that the cytidine bound far from AdoMet with the distance of 25.9Å. It indicates that the complex is not in a catalytically active state, and structural rearrangement of RsmH or the nucleotides neighboring C1402 may be necessary to trigger catalysis. Although there is only one molecule in the asymmetric unit of the crystals, RsmH can form a compact dimer across a crystallographic twofold axis. Further analysis of RsmH by small-angle X-ray scattering (SAXS) also revealed the dimer in solution, but with a more flexible conformation than that in crystal, likely resulting from the absence of the substrate. It implies that an active status of RsmH in vivo is achieved by a formation of the dimeric architecture. In general, crystal and solution structural analysis provides new information on the mechanism of the methylation of the fine-tuning ribosomal decoding center by the RsmH.
    Journal of Structural Biology 04/2012; 179(1):29-40. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The COP9 signalosome (CSN) is a multiprotein complex containing eight subunits and is highly conserved from fungi to human. CSN is proposed to widely participate in many physiological processes, including protein degradation, DNA damage response and signal transduction. Among those subunits, only CSN5 and CSN6 belong to JAMM family. CSN5 possesses isopeptidase activity, but CSN6 lacks this ability. Here we report the 2.5Å crystal structure of MPN domain from Drosophila melanogaster CSN6. Structural comparison with other MPN domains, along with bioinformation analysis, suggests that MPN domain from CSN6 may serve as a scaffold instead of a metalloprotease.
    FEBS letters 04/2012; 586(8):1147-53. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Escherichia coli, the BAM complex is employed to mediate correct folding of the outer membrane (OM) proteins into β-barrels and their insertion into the OM. BamA, which is an essential component of the complex, consists of a C-terminal transmembrane region and five N-terminal polypeptide transport-associated (POTRA) domains. Although deletion studies have shown that each of the POTRA domains plays an important role in the process of BAM complex formation, only POTRA5 is essential for cell viability. Here, the crystal structure of POTRA4-5 has been determined to 1.50 Å resolution with an R factor of 14.7% and an Rfree of 18.9%.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 07/2011; 67(Pt 7):734-8. · 0.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.
    PLoS ONE 01/2011; 6(9):e24227. · 3.73 Impact Factor

Publication Stats

53 Citations
61.82 Total Impact Points

Institutions

  • 2012–2014
    • Chinese Academy of Sciences
      • Institute of High Energy Physics
      Peping, Beijing, China
    • University of Science and Technology of China
      • School of Life Sciences
      Hefei, Anhui Sheng, China
  • 2011–2014
    • Peking University
      • School of Life Sciences
      Peping, Beijing, China
  • 2013
    • Beijing University of Chemical Technology
      Peping, Beijing, China
    • Technical Institute of Physics and Chemistry
      Peping, Beijing, China
  • 2012–2013
    • Northeast Institute of Geography and Agroecology
      • Institute of High Energy Physics
      Beijing, Beijing Shi, China