Dae-Kwon Bae

Chungbuk National University, Tyundyu, North Chungcheong, South Korea

Are you Dae-Kwon Bae?

Claim your profile

Publications (10)11.23 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The neuroprotective effects of a butanol fraction of white rose petal extract (WRPE-BF) were investigated in a middle cerebral artery occlusion (MCAO) model. Seven week-old male rats were orally administered WRPE-BF for 2 weeks and subjected to MCAO for 2 h, followed by reperfusion. Twenty-four h later, MCAO-induced behavioral dysfunctions were markedly improved in a dose-dependent manner by pretreatment with WRPE-BF. Moreover, higher dose of WRPE-BF not only decreased infarction area but also effectively reduced astrogliosis. The expression of inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein in MCAO model were markedly inhibited by WRPE-BF treatment. Notably, WRPE-BF decreased nitric oxide and malondialdehyde levels in the striatum and subventricular zone of stroke-challenged brains. These data suggested that WRPE-BF may exert its neuroprotective effects via anti-oxidative and anti-inflammatory activities against ischemia-reperfusion brain injury and could be a good candidate as a therapeutic target for ischemic stroke.
    Biomolecules and Therapeutics 11/2013; 21(6):454-461. · 0.79 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A human neural stem cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gene was generated and these F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease (AD) model which was induced by application of ethylcholine mustard aziridinium ion (AF64A) that specifically denatures cholinergic nerves and thereby leads to memory deficit as a salient feature of AD. Transplantation of F3.ChAT human NSCs fully recovered the learning and memory function of AF64A animals, and induced elevated levels of acetylcholine (ACh) in cerebrospinal fluid (CSF). Transplanted F3.ChAT human NSCs were found to migrate to various brain regions including cerebral cortex, hippocampus, striatum and septum, and differentiated into neurons and astrocytes. The present study demonstrates that brain transplantation of human NSCs over-expressing ChAT ameliorates complex learning and memory deficits in AF64A-cholinotoxin-induced AD rat model.
    Experimental Neurology 01/2012; 234(2):521-6. · 4.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: PURPOSE: The objective was to confirm the anti-obesity activity of a silk peptide (SP) and a silkworm pupa peptide (SPP) in rats fed a high-fat diet (HFD) and to elucidate their action mechanism(s) in a preadipocyte culture system. METHODS: In an in vitro mechanistic study, the differentiation and maturation of 3T3-L1 preadipocytes were stimulated with insulin (5 μg/mL), and effects of SP and SPP on the adipogenesis of mature adipocytes were assessed. In an in vivo anti-obesity study, male C57BL/6 mice were fed an HFD containing SP or SPP (0.3, 1.0, or 3.0%) for 8 weeks, and blood and tissue parameters of obesity were analyzed. RESULTS: Hormonal stimulation of preadipocytes led to a 50-70% increase in adipogenesis. Polymerase chain reaction and Western blot analyses revealed increases in adipogenesis-specific genes (leptin and Acrp30) and proteins (peroxisome proliferator-activated receptor-γ and Acrp30). The hormone-induced adipogenesis and activated gene expression was substantially inhibited by treatment with SP and SPP (1-50 μg/mL). The HFD markedly increased body weight gain by increasing the weight of epididymal and mesenteric fat. Body and fat weights were significantly reduced by SP and SPP, in which decreases in the area of abdominal adipose tissue and the size of epididymal adipocytes were confirmed by magnetic resonance imaging and microscopic examination, respectively. Long-term HFD caused hepatic lipid accumulation and increased blood triglycerides and cholesterol, in addition to their regulatory factors Acrp30 and leptin. However, SP and SPP recovered the concentrations of Acrp30 and leptin, and attenuated steatosis. CONCLUSIONS: SP and SPP inhibit the differentiation of preadipocytes and adipogenesis by modulating signal transduction pathways and improve HFD-induced obesity by reducing lipid accumulation and the size of adipocytes.
    European Journal of Nutrition 12/2011; · 3.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The study investigated the correlation between infarction areas and behavioural deficits in middle cerebral artery occlusion (MCAO) and photothrombosis stroke models. In the MCAO model, a 0.38 mm-diameter silicone-coated thread was introduced through the left external carotid artery and advanced 18 mm via the internal carotid artery to the origin of middle cerebral artery of male Sprague-Dawley rats weighing 300-350 g. The thread was removed for reperfusion after occlusion for 0.5, 1 or 2h. In the photothrombosis model, after a midline incision on the scalp, a focused light (10,000 lux, 6 mm-diameter) was delivered 1mm anterior to the bregma and 3mm left of the midline for 5, 10 or 20 min. During the first 2 min of irradiation, Rose Bengal dye (30 mg/kg) was injected intravenously. Twenty four hours post-surgery, the animals were subjected to neurological scoring and behavioural performances, and were sacrificed for macroscopic and microscopic examinations of brain injury. Total infarction volumes in the MCAO model rats increased in an occlusion time-dependent manner, while the infarction volumes in photothrombosis model rats plateaued relatively quickly with no time-dependent increase. The MCAO model displayed neurological scores and behavioural deficits that correlated well with infarction volumes, while relatively poor correlation between infarction volume and neurobehavioural abnormalities was evident in the photothrombosis model. The results indicate the suitability of the MCAO model for studies on preventive or therapeutic compounds related to functional recovery, although the photothrombosis model might be useful to generate focused lesions leading to the location-related behavioural changes.
    Environmental toxicology and pharmacology. 11/2011; 33(1):60-9.
  • [show abstract] [hide abstract]
    ABSTRACT: Since cyclophosphamide is metabolically activated to teratogenic acrolein and cytotoxic phosphoramide mustard by cytochrome P-450 type 2B (CYP2B), we assessed the effects of licorice, a CYP2B inducer, on the fetal defects induced by cyclophosphamide. Pregnant Sprague-Dawley rats were daily administered with licorice (100 mg/kg) by gavage for 7 days, from the 6th to 12th day of gestation, and intraperitoneally administered with cyclophosphamide (11 mg/kg) 1 hr after the final licorice treatment. On the 20th day of gestation, maternal and fetal abnormalities were determined by Cesarian section. Cyclophosphamide was found to reduce fetal and placental weights without increasing resorption or death. In addition, it induced malformations in live fetuses; 93.8, 41.1, and 100% of the external (skull and limb defects), visceral (cleft palate and ureteric dilatation), and skeletal (acrania, vertebral/costal malformations, and delayed ossification) abnormalities, respectively. When pre-treated with licorice, cyclophosphamide-induced body weight loss and abnormalities of fetuses were remarkably aggravated. Moreover, repeated treatment with licorice greatly increased mRNA expression and activity of hepatic CYP2B. The results indicate that repeated intake of licorice may aggravate cyclophosphamide-induced body weight loss and malformations of fetuses by upregulating CYP2B.
    Birth Defects Research Part B Developmental and Reproductive Toxicology 08/2011; 92(6):553-9. · 1.97 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.
    Laboratory animal research. 06/2011; 27(2):77-84.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Antitumor effects of a ginsenoside Rg(3)-fortified red ginseng preparation (Rg(3)-RGP) were investigated in human non-small cell lung carcinoma (H460) cells using in vitro cytotoxicity assay and in vivo nude mouse xenograft model. Immunomodulatory effects of the preparation were also assessed by measuring the facilitating activities on the nitric oxide (NO) release from peritoneal macrophages, in vitro and in vivo lymphocyte proliferation, and the carbon clearance from circulating blood. In a cell level, Rg(3)-RGP exerted H460 cytotoxicity and facilitated splenocyte proliferation at very high concentrations, without affecting NO production. However, oral administration of Rg(3)-RGP (100-300 mg/kg) enhanced carbon particle-phagocytic index of blood macrophages up to 360-397% of control value. In addition, Rg(3)-RGP significantly increased the splenocyte proliferation (23% at 100mg/kg). In tumor-bearing mice, 28-day oral treatment with Rg(3)-RGP (100mg/kg) remarkably suppressed the tumor growth, leading to the decrease of the tumor volume and weight by 30-31%, which was comparable to the effect (27-29% reduction) of doxorubicin (2mg/kg at 3-day intervals). While Rg(3)-RGP did not cause adverse effects, intravenous injection of doxorubicin markedly decreased body and testes weights, and exhibited severe depletion of spermatogenic cells in the atrophic seminiferous tubules. These results indicate that Rg(3)-RGP exerts antitumor activities via indirect immunomodulatory actions, without causing adverse effects as seen in doxorubicin.
    Environmental toxicology and pharmacology. 05/2011; 31(3):397-405.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Renal toxicity by melamine in combination with cyanuric acid (1:1) was investigated. Male rats were orally administered melamine plus cyanuric acid (5, 50 or 400 mg/kg each) for 3 days. In contrast to a negligible effect by melamine alone (50 mg/kg, a no-observed-adverse-effect-level: NOAEL), co-administration with cyanuric acid markedly increased the concentrations of blood urea nitrogen and creatinine, as well as kidney weight. A high dose (400 mg/kg) of melamine plus cyanuric acid induced more severe kidney toxicity. The increased blood parameters for kidney toxicity and organ weight lasted longer than 4 days. Combined treatment with melamine and cyanuric acid (50-400 mg/kg each) resulted in many gold-brown crystals and toxic lesions in renal tubules, which were not observed in animals treated with melamine alone (50 mg/kg). These results indicate that only a 3-day exposure to melamine in combination with cyanuric acid causes severe renal damage, even at a NOAEL for melamine found in a 13-week toxicity study. Therefore, it is suggested that the tolerable daily intake or regulatory/management levels of melamine need to be re-considered for cases of co-exposure with cyanuric acid.
    Laboratory animal research. 03/2011; 27(1):25-8.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Antiulcer effects of pantoprazole, a proton-pump inhibitor, on water-immersion restraint stress (WIRS)-, alcohol (ethanol)- and pylorus ligation-induced gastric ulcers were investigated in male rats. Rats were orally administered with pantoprazole 30 min prior to exposure to various types of ulcer inducers. In stress-induced ulcer model, rats were subjected to WIRS at 22℃ for 4 hours, and the degree of ulcer (in mm) was evaluated. In alcohol-induced ulcer model, rats were orally administered with pure (100%) ethanol (1 mL/kg), and the ulcer lesions were measured 1 hour after ethanol challenge. In pylorus ligation-induced ulcer model, rats were subjected to pylorus ligation, and the degree of erosions and ulcers was scored 17 hours after the operation. Pantoprazole attenuated the ulcer lesions induced by WIRS in a dose-dependent manner, exhibiting a median effective dose (ED(50)) value of 0.78 mg/kg. By comparison, pantoprazole was effective at relatively-high doses for the improvement of ethanol-induced ulcers, showing an ED(50) value of 20.5 mg/kg. Notably, pantoprazole was practically ineffective (ED(50)>50.0) in pylorus ligation model. Taken together, it was confirmed that pantoprazole showed inhibitory activity on gastric ulcers induced by stress and alcohol, but was ineffective on pylorus ligation-induced ulcer. Therefore, the results indicate that proton-pump inhibitors including pantoprazole might reveal highly-different effects according to the type of ulcer inducers, and that the prescription of antiulcer agents should be carefully selected.
    Laboratory animal research. 03/2011; 27(1):47-52.
  • [show abstract] [hide abstract]
    ABSTRACT: Physical function-improving effects of a silk amino acid preparation (SAA) in Parkinson’s disease (PD) model rats were investigated. 6-Hydroxydopamine (6-OHDA, 8 μg)+ascorbic acid (0.6 μg) was injected into right medial forebrain bundle of 8-week-old Sprague-Dawley rats to induce PD, and SAA (50, 160, or 500 mg/kg) was orally administered for 30 days. On day 15 and 30, behavioral abnormalities, neuronal loss, and dopamine and its metabolites were analyzed. Injection of 6-OHDA impaired pole test performances, which were markedly improved by treatment with SAA. Increased using rate of ipsilateral (normal) forelimb in cyclinder test and apomorphine (0.05 mg/kg)-induced circling behavior of PD rats were remarkably corrected by the compounds. In addition, 6-OHDA-induced loss of neurons as well as decreases in dopamine and its metabolites were significantly attenuated by SAA. The results indicate that SAA preserves movement function of PD model animals by protecting dopamine neurons against 6-OHDA neurotoxicity. Keywordssilk amino acid–tyrosine–Parkinson’s disease–physical function–neuroprotection
    Food science and biotechnology 20(1):79-84. · 0.70 Impact Factor