Colin Dickens

British American Tobacco, Londinium, England, United Kingdom

Are you Colin Dickens?

Claim your profile

Publications (4)5.89 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The steady-state effective particle density of mainstream smoke from a University of Kentucky 3R4F reference cigarette was determined using a Differential Mobility Analyzer (DMA) and Centrifugal Particle Mass Analyzer (CPMA). The cigarette smoke was generated using a smoking machine under ISO puffing parameters (35 ml puff of 2 s duration, every 60 s) and collected in a Tedlar® bag. This smoke generation process resulted in the first puff of the smoking cycle aging approximately 7 minutes longer than the last puff. The effective particle density (measured immediately upon completion of the last puff) was found to be independent of the particle mobility size, indicating the particles have a spherical morphology, with an average density of 1180±113 kg/m3. Particle coagulation was also found to occur within the Tedlar® bag by comparing particle mobility size distributions, measured with a Scanning Mobility Particle Sizer (SMPS), against an analytical model. This model showed that particle coagulation dominated the particle number concentration decay within the Tedlar® bag compared to particle diffusion or settling losses. Therefore cigarette smoke particles must have a liquid component to maintain a constant effective particle density function in the presence of coagulation. After the 7 minute filling process, the effects of particle aging time and initial particle number concentration in the Tedlar® bag on the effective particle density were found to be small and indistinguishable within the bias uncertainty of the measurement system.
    Journal of Aerosol Science 01/2014; 75:9-16. · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP.
    Inhalation Toxicology 12/2013; · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: There have been many recent developments of in vitro cigarette smoke systems closely replicating in vivo exposures. The Borgwaldt RM20S smoking machine (RM20S) enables the serial dilution and delivery of cigarette smoke to exposure chambers for in vitro analyses. In this study we have demonstrated reliability and robustness testing of the RM20S in delivering smoke to in vitro cultures using an in-house designed whole smoke exposure chamber. The syringe precision and accuracy of smoke dose generated by the RM20S was assessed using a methane gas standard and resulted in a repeatability error of ≤9%. Differential electrical mobility particle spectrometry (DMS) measured smoke particles generated from reference 3R4F cigarettes at points along the RM20S. 53% ± 5.9% of particles by mass reached the chamber, the remainder deposited in the syringe or connecting tubing and ~16% deposited in the chamber. Spectrofluorometric quantification of particle deposition within chambers indicated a positive correlation between smoke concentration and particle deposition. In vitro air-liquid interface (ALI) cultures (H292 lung epithelial cells), exposed to whole smoke (1:60 dilution (smoke:air, equivalent to ~5 μg/cm2)) demonstrated uniform smoke delivery within the chamber. These results suggest this smoke exposure system is a reliable and repeatable method of generating and exposing ALI in vitro cultures to cigarette smoke. This system will enable the evaluation of future tobacco products and individual components of cigarette smoke and may be used as an alternative in vitro tool for evaluating other aerosols and gaseous mixtures such as air pollutants, inhaled pharmaceuticals and cosmetics.
    Chemistry Central Journal 08/2011; 5:50. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 -- 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.
    Journal of Physics Conference Series 03/2009; 151(1):012019.