Aya Kitamoto

RIKEN, Wako, Saitama-ken, Japan

Are you Aya Kitamoto?

Claim your profile

Publications (8)21.52 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury occasionally causes posttraumatic epilepsy. To elucidate the molecular events responsible for posttraumatic epilepsy, we established a rodent model that involved the injection of microliter quantities of FeCl3 solution into the amygdalar nuclear complex. We previously compared hippocampal gene expression profiles in the traumatic epilepsy model and normal rats at 5 days after brain injury (acute phase) to determine the role of inflammation. In this study, we focused on later stages of epileptogenesis. We compared gene expression profiles at 5, 15 (sub-chronic phase), and 30 days (chronic phase) after brain injury to identify temporal changes in molecular networks involved in epileptogenesis. A total of 81 genes were significantly (at least twofold) up- or downregulated over the course of disease progression. We found that genes related to lipid metabolism, namely, Apoa1, Gh, Mc4r, Oprk1, and Pdk4, were temporarily upregulated in the sub-chronic phase. Changes in lipid metabolism regulation might be related to seizure propagation during epileptogenesis. This temporal description of hippocampal gene expression profiles throughout epileptogenesis provides clues to potential markers of disease phases and new therapeutic targets.
    Neurochemical Research 04/2013; · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small non-coding RNAs that control protein expression through translational inhibition or mRNA degradation. MiRNAs have been implicated in diverse biological processes such as development, proliferation, apoptosis and differentiation. Upon treatment with nerve growth factor (NGF), rat pheochromocytoma PC12 cells elicit neurite outgrowth and differentiate into neuron-like cells. NGF plays a critical role not only in neuronal differentiation but also in protection against apoptosis. In an attempt to identify NGF-regulated miRNAs in PC12 cells, we performed miRNA microarray analysis using total RNA harvested from cells treated with NGF. In response to NGF treatment, expression of 8 and 12 miRNAs were up- and down-regulated, respectively. Quantitative RT-PCR analysis of 11 out of 20 miRNAs verified increased expression of miR-181a(∗), miR-221 and miR-326, and decreased expression of miR-106b(∗), miR-126, miR-139-3p, miR-143, miR-210 and miR-532-3p after NGF treatment, among which miR-221 was drastically up-regulated. Functional annotation analysis of potential target genes of 7 out of 9 miRNAs excluding the passenger strands (*) revealed that NGF may regulate expression of various genes by controlling miRNA expression, including those whose functions and processes are known to be related to NGF. Overexpression of miR-221 induced neuronal differentiation of PC12 cells in the absence of NGF treatment, and also enhanced neuronal differentiation caused by low-dose NGF. Furthermore, miR-221 potentiated formation of neurite network, which was associated with increased expression of synapsin I, a marker for synapse formation. More importantly, knockdown of miR-221 expression by antagomir attenuated NGF-mediated neuronal differentiation. Finally, miR-221 decreased expression of Foxo3a and Apaf-1, both of which are known to be involved in apoptosis in PC12 cells. Our results suggest that miR-221 plays a critical role in neuronal differentiation as well as protection against apoptosis in PC12 cells.
    Neurochemistry International 03/2012; 60(8):743-50. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we performed comprehensive gene expression and gene network analyses using a DNA microarray to elucidate the molecular events responsible for the pathology of posttraumatic epilepsy at the partial seizure stage. We used an experimental posttraumatic epilepsy model of amygdalar focal FeCl(3)-injected rats and compared gene expression profiles in the hippocampus at the partial seizure stage (less than stage 3 on Racine's convulsion scale) and that of sham-operated animals. At the partial seizure stage, upregulation of phospholipase A2 (PLA2) and lipid metabolism were observed, which have been reported to be caused by brain injury and seizures in previous studies. Furthermore, significant upregulation of genes related to inflammation and the immune system was observed. These molecular changes in PLA2 and lipid metabolism may be related to seizure propagation.
    Neurochemical Research 12/2010; 36(7):1323-8. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are involved in cancer pathogenesis and act as tumor suppressors or oncogenes. It has been recently reported that miR-148a expression is down-regulated in several types of cancer. The functional roles and target genes of miR-148a in prostate cancer, however, remain unknown. In this report, we showed that miR-148a expression levels were lower in PC3 and DU145 hormone-refractory prostate cancer cells in comparison to PrEC normal human prostate epithelial cells and LNCaP hormone-sensitive prostate cancer cells. Transfection with miR-148a precursor inhibited cell growth, and cell migration and invasion, and increased the sensitivity to anti-cancer drug paclitaxel in PC3 cells. Computer-aided algorithms predicted mitogen- and stress-activated protein kinase, MSK1, as a potential target of miR-148a. Indeed, miR-148a overexpression decreased expression of MSK1. Using luciferase reporter assays, we identified MSK1 as a direct target of miR-148a. Suppression of MSK1 expression by siRNA, however, showed little or no effects on malignant phenotypes of PC3 cells. In PC3PR cells, a paclitaxel-resistant cell line established from PC3 cells, miR-148a inhibited cell growth, and cell migration and invasion, and also attenuated the resistance to paclitaxel. MiR-148a reduced MSK1 expression by directly targeting its 3'-UTR in PC3PR cells. Furthermore, MSK1 knockdown reduced paclitaxel-resistance of PC3PR cells, indicating that miR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant PC3PR cells in part by regulating MSK1 expression. Our findings suggest that miR-148a plays multiple roles as a tumor suppressor and can be a promising therapeutic target for hormone-refractory prostate cancer especially for drug-resistant prostate cancer.
    Journal of Biological Chemistry 06/2010; 285(25):19076-84. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal hypoxic-ischemic (HI) encephalopathy can lead to severe brain damage, and is a common cause of neurological handicaps in adulthood. HI can be resolved by the administration of an antioxidant such as 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186). In the present study, we performed comprehensive gene expression and gene network analyses using a DNA microarray to elucidate the molecular events responsible for the selective vulnerability of neurons in neonatal HI brain insult and to examine the underlying mechanisms of the effect of MCI-186 on the pathophysiological events in this condition. We used the modified Levine method (Rice model), which has been widely used as an animal model of this condition. A large difference in gene expression was observed between the Rice model and the control group. Up- and downregulated genes after the HI brain insult were mainly related to immune responses and cell death, and neuronal activity, respectively. The effect of MCI-186 administration on gene expression was much less than and contrary to that of the HI brain insult, reflecting the protective effect of MCI-186 in HI brain insult.
    Journal of Molecular Neuroscience 02/2010; 42(2):154-61. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The strong familiality of living to extreme ages suggests that human longevity is genetically regulated. The majority of genes found thus far to be associated with longevity primarily function in lipoprotein metabolism and insulin/IGF-1 signaling. There are likely many more genetic modifiers of human longevity that remain to be discovered. Here, we first show that 18 single nucleotide polymorphisms (SNPs) in the RNA editing genes ADARB1 and ADARB2 are associated with extreme old age in a U.S. based study of centenarians, the New England Centenarian Study. We describe replications of these findings in three independently conducted centenarian studies with different genetic backgrounds (Italian, Ashkenazi Jewish and Japanese) that collectively support an association of ADARB1 and ADARB2 with longevity. Some SNPs in ADARB2 replicate consistently in the four populations and suggest a strong effect that is independent of the different genetic backgrounds and environments. To evaluate the functional association of these genes with lifespan, we demonstrate that inactivation of their orthologues adr-1 and adr-2 in C. elegans reduces median survival by 50%. We further demonstrate that inactivation of the argonaute gene, rde-1, a critical regulator of RNA interference, completely restores lifespan to normal levels in the context of adr-1 and adr-2 loss of function. Our results suggest that RNA editors may be an important regulator of aging in humans and that, when evaluated in C. elegans, this pathway may interact with the RNA interference machinery to regulate lifespan.
    PLoS ONE 01/2009; 4(12):e8210. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article on p. e8210 in vol. 4.].
    PLoS ONE 01/2009; 4(12). · 3.53 Impact Factor
  • Neuroscience Research - NEUROSCI RES. 01/2009; 65.