Qian Jiang

Capital institute of Pediatrics, Peping, Beijing, China

Are you Qian Jiang?

Claim your profile

Publications (4)25.7 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innervation of the gut is segmentally lost in Hirschsprung disease (HSCR), a consequence of cell-autonomous and non-autonomous defects in enteric neuronal cell differentiation, proliferation, migration, or survival. Rare, high-penetrance coding variants and common, low-penetrance non-coding variants in 13 genes are known to underlie HSCR risk, with the most frequent variants in the ret proto-oncogene (RET). We used a genome-wide association (220 trios) and replication (429 trios) study to reveal a second non-coding variant distal to RET and a non-coding allele on chromosome 7 within the class 3 Semaphorin gene cluster. Analysis in Ret wild-type and Ret-null mice demonstrates specific expression of Sema3a, Sema3c, and Sema3d in the enteric nervous system (ENS). In zebrafish embryos, sema3 knockdowns show reduction of migratory ENS precursors with complete ablation under conjoint ret loss of function. Seven candidate receptors of Sema3 proteins are also expressed within the mouse ENS and their expression is also lost in the ENS of Ret-null embryos. Sequencing of SEMA3A, SEMA3C, and SEMA3D in 254 HSCR-affected subjects followed by in silico protein structure modeling and functional analyses identified five disease-associated alleles with loss-of-function defects in semaphorin dimerization and binding to their cognate neuropilin and plexin receptors. Thus, semaphorin 3C/3D signaling is an evolutionarily conserved regulator of ENS development whose dys-regulation is a cause of enteric aganglionosis. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 04/2015; 96(4):581-596. DOI:10.1016/j.ajhg.2015.02.014 · 10.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The risk of Hirschsprung disease (HSCR) is ∼15/100,000 live births per newborn but has been reported to show significant inter-individual variation from the effects of seven common susceptibility alleles at the RET, SEMA3 and NRG1 loci. We show, by analyses of these variants in 997 samples from 376 HSCR families of European ancestry, that significant genetic risk can only be detected at RET (rs2435357 and rs2506030) and at SEMA3 (rs11766001), but not at NRG1. RET rs2435357 also showed significant frequency differences by gender, segment length of aganglionosis and familiality. Further, in combination, disease risk varied >30-fold between individuals with none and up to 6 susceptibility alleles. Thus, these polymorphisms can be used to stratify the newborn population into distinct phenotypic classes with defined risks to understand HSCR etiology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 02/2015; 24(10). DOI:10.1093/hmg/ddv051 · 6.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing (NGS) technologies can be a boon to human mutation detection given their high throughput: consequently, many genes and samples may be simultaneously studied with high coverage for accurate detection of heterozygotes. In circumstances requiring the intensive study of a few genes, particularly in clinical applications, a rapid turn around is another desirable goal. To this end, we assessed the performance of the bench-top 454 GS Junior platform as an optimized solution for mutation detection by amplicon sequencing of three type 3 semaphorin genes SEMA3A, SEMA3C, and SEMA3D implicated in Hirschsprung disease (HSCR). We performed mutation detection on 39 PCR amplicons totaling 14,014 bp in 47 samples studied in pools of 12 samples. Each 10-hr run was able to generate ∼75,000 reads and ∼28 million high-quality bases at an average read length of 371 bp. The overall sequencing error was 0.26 changes per kb at a coverage depth of ≥20 reads. Altogether, 37 sequence variants were found in this study of which 10 were unique to HSCR patients. We identified five missense mutations in these three genes that may potentially be involved in the pathogenesis of HSCR and need to be studied in larger patient samples.
    Human Mutation 01/2012; 33(1):281-9. DOI:10.1002/humu.21602 · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hirschsprung disease (HSCR) is a neurocristopathy characterized by absence of intramural ganglion cells along variable lengths of the gastrointestinal tract. The HSCR phenotype is highly variable with respect to gender, length of aganglionosis, familiality and the presence of additional anomalies. By molecular genetic analysis, a minimum of 11 neuro-developmental genes (RET, GDNF, NRTN, SOX10, EDNRB, EDN3, ECE1, ZFHX1B, PHOX2B, KIAA1279, TCF4) are known to harbor rare, high-penetrance mutations that confer a large risk to the bearer. In addition, two other genes (RET, NRG1) harbor common, low-penetrance polymorphisms that contribute only partially to risk and can act as genetic modifiers. To broaden this search, we examined whether a set of 67 proven and candidate HSCR genes harbored additional modifier alleles. In this pilot study, we utilized a custom-designed array CGH with ∼33,000 test probes at an average resolution of ∼185 bp to detect gene-sized or smaller copy number variants (CNVs) within these 67 genes in 18 heterogeneous HSCR patients. Using stringent criteria, we identified CNVs at three loci (MAPK10, ZFHX1B, SOX2) that are novel, involve regulatory and coding sequences of neuro-developmental genes, and show association with HSCR in combination with other congenital anomalies. Additional CNVs are observed under relaxed criteria. Our research suggests a role for CNVs in HSCR and, importantly, emphasizes the role of variation in regulatory sequences. A much larger study will be necessary both for replication and for identifying the full spectrum of small CNV effects.
    PLoS ONE 06/2011; 6(6):e21219. DOI:10.1371/journal.pone.0021219 · 3.23 Impact Factor