Katie E Lineburg

Queensland Institute of Medical Research, Brisbane, Queensland, Australia

Are you Katie E Lineburg?

Claim your profile

Publications (21)151.99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or over-project into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing cells (OECs) are the glia of the primary olfactory nerve and are known to phagocytose axon debris in the adult and postnatal animal. However it is unclear when phagocytosis by OECs first commences. We have investigated the onset of phagocytosis by OECs in the developing mouse olfactory system by utilizing two transgenic reporter lines: OMP-ZsGreen mice which express bright green fluorescent protein in primary olfactory neurons and S100ß-DsRed mice which express red fluorescent protein in OECs. In crosses of these mice, the fate of the degraded axon debris is easily visualized. We found evidence of axon degradation at E13.5. Phagocytosis of the primary olfactory axon debris by OECs was first detected at E14.5. Phagocytosis of axon debris continued into the postnatal animal during the period when there was extensive mis-targeting of olfactory axons. Macrophages were often present in close proximity to OECs but they contributed only a minor role to clearing the axon debris, even after widespread degeneration of olfactory neurons by unilateral bulbectomy and methimazole treatment. These results demonstrate that from early in embryonic development OECs are the primary phagocytic cells of the primary olfactory nerve. J. Comp. Neurol., 2014. © 2014 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 02/2015; 523(3). DOI:10.1002/cne.23694 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic Pneumonia Syndrome (IPS) is a relatively common, frequently fatal clinical entity characterized by non-infectious acute lung inflammation following allogeneic stem cell transplantation (SCT), the mechanisms of which are unclear. Here we demonstrate that immune suppression with cyclosporin after SCT limits Th1 differentiation and IFNγ secretion by donor T cells which is critical for inhibiting IL-6 generation from lung parenchyma during an alloimmune response. Thereafter, local IL-6 secretion induces donor alloantigen-specific Th17 cells to preferentially expand within the lung and blockade of IL-17A or transplantation of grafts lacking the IL-17 receptor prevents disease. Studies using IL-6(-/-) recipients or IL-6 blockade demonstrate that IL-6 is the critical driver of donor Th17 differentiation within the lung. Importantly, IL-6 is also dysregulated in patients undergoing clinical SCT and was present at very high levels in the plasma of patients with IPS compared to SCT recipients without complications. Furthermore, at the time of diagnosis, plasma IL-6 levels were higher in a subset of IPS patients who were non-responsive to steroids and anti-TNF therapy. In sum, pulmonary-derived IL-6 promotes IPS via the induction of Th17 differentiation and strategies that target these cytokines represent logical therapeutic approaches for IPS. Copyright © 2015 American Society of Hematology.
    Blood 02/2015; DOI:10.1182/blood-2014-07-590232 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allogeneic haematopoietic stem cell transplantation (HSCT) represents the only curative therapy for the majority of bone marrow-derived cancers. Unfortunately, HSCT can result in serious complications such as graft-versus-host disease, graft failure and infection. In the last decade, there have been major advances in the understanding of the role of autophagy in many diseases and cellular processes. Recent findings have demonstrated a crucial role for autophagy in haematopoietic stem cell survival and function, antigen presentation, T-cell differentiation and response to cytokine stimulation. Given the critical requirement for each of these processes in HSCT and subsequent complications, it is surprising that the contribution of autophagy to HSCT per se is relatively unexplored. In addition, the increasing use of autophagy-modulating drugs in the clinic further highlights the need to understand the role of autophagy in allogeneic HSCT. This review will cover established and implicated roles of autophagy in HSCT, suggesting this pathway as an important therapeutic target for improving transplant outcomes.Immunology and Cell Biology advance online publication, 4 November 2014; doi:10.1038/icb.2014.95.
    Immunology and Cell Biology 11/2014; 93(1). DOI:10.1038/icb.2014.95 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17-dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS-). Cutaneous cGVHD developed in a CSF-1/CSF-1R-dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r-/- mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti-CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD.
    Journal of Clinical Investigation 08/2014; 124(10). DOI:10.1172/JCI75935 · 13.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stimulation of naive donor T cells by recipient alloantigen is central to the pathogenesis of graft-versus-host disease after bone marrow transplantation (BMT). Using mouse models of transplantation, we have observed that donor cells become "cross-dressed" in very high levels of recipient hematopoietic cell-derived MHC class I and II molecules following BMT. Recipient-type MHC is transiently present on donor dendritic cells (DCs) after BMT in the setting of myeloablative conditioning but is persistent after nonmyeloablative conditioning, in which recipient hematopoietic cells remain in high numbers. Despite the high level of recipient-derived alloantigen present on the surface of donor DCs, donor T cell proliferative responses are generated only in response to processed recipient alloantigen presented via the indirect pathway and not in response to cross-dressed MHC. Assays in which exogenous peptide is added to cross-dressed MHC in the presence of naive TCR transgenic T cells specific to the MHC class II-peptide combination confirm that cross-dressed APC cannot induce T cell proliferation in isolation. Despite failure to induce T cell proliferation, cross-dressing by donor DCs contributes to generation of the immunological synapse between DCs and CD4 T cells, and this is required for maximal responses induced by classical indirectly presented alloantigen. We conclude that the process of cross-dressing by donor DCs serves as an efficient alternative pathway for the acquisition of recipient alloantigen and that once acquired, this cross-dressed MHC can assist in immune synapse formation prior to the induction of full T cell proliferative responses by concurrent indirect Ag presentation.
    The Journal of Immunology 04/2014; 192(11). DOI:10.4049/jimmunol.1302490 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after with G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast, stem cell mobilization with the CXCR4 antagonist AMD3100 did not alter the donor T cell's ability to induce acute GVHD. These studies provide an explanation for the effects of G-CSF on T cell function and demonstrate that IL-10 is required to license regulatory function but T cell production of IL-10 is not itself required for the attenuation GVHD. Although administration of CXCR4 antagonists is an efficient means of stem cell mobilization, this fails to evoke the immunomodulatory effects seen during G-CSF mobilization. These data provide a compelling rationale for considering the immunological benefits of G-CSF in selecting mobilization protocols for allogeneic stem cell transplantation.
    The Journal of Immunology 02/2014; 192(7). DOI:10.4049/jimmunol.1302315 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4(+) T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our incomplete understanding of immunity against this disease. Here, we used an experimental rodent malaria model to show that PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8(+) T cells. Furthermore, in contrast to widely held views, parasite-specific CD8(+) T cells are required to control both acute and chronic blood-stage disease even when parasite-specific antibodies and CD4(+) T cells are present. Our findings provide a molecular explanation for chronic malaria that will be relevant to future malaria-vaccine design and may need consideration when vaccine development for other infections is problematic.
    Cell Reports 12/2013; 5(5). DOI:10.1016/j.celrep.2013.11.002 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural regulatory T cells (nTregs) play an important role in tolerance; however, the small numbers of cells obtainable potentially limit the feasibility of clinical adoptive transfer. Therefore, we studied the feasibility and efficacy of using murine-induced regulatory T cells (iTregs) for the induction of tolerance after bone marrow transplantation. iTregs could be induced in large numbers from conventional donor CD4 and CD8 T cells within 1 wk and were highly suppressive. During graft-versus-host disease (GVHD), CD4 and CD8 iTregs suppressed the proliferation of effector T cells and the production of proinflammatory cytokines. However, unlike nTregs, both iTreg populations lost Foxp3 expression within 3 wk in vivo, reverted to effector T cells, and exacerbated GVHD. The loss of Foxp3 in iTregs followed homeostatic and/or alloantigen-driven proliferation and was unrelated to GVHD. However, the concurrent administration of rapamycin, with or without IL-2/anti-IL-2 Ab complexes, to the transplant recipients significantly improved Foxp3 stability in CD4 iTregs (and, to a lesser extent, CD8 iTregs), such that they remained detectable 12 wk after transfer. Strikingly, CD4, but not CD8, iTregs could then suppress Teff proliferation and proinflammatory cytokine production and prevent GVHD in an equivalent fashion to nTregs. However, at high numbers and when used as GVHD prophylaxis, Tregs potently suppress graft-versus-leukemia effects and so may be most appropriate as a therapeutic modality to treat GVHD. These data demonstrate that CD4 iTregs can be produced rapidly in large, clinically relevant numbers and, when transferred in the presence of systemic rapamycin and IL-2, induce tolerance in transplant recipients.
    The Journal of Immunology 10/2013; 191(10). DOI:10.4049/jimmunol.1301181 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Donor T cells play pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects following bone marrow transplantation (BMT). DNAX accessory molecule 1 (DNAM-1) is a co-stimulatory and adhesion molecule, expressed mainly by NK cells and CD8(+) T cells at steady state to promote adhesion to ligand-expressing targets and enhance cytolysis. We have analyzed the role of this pathway in GVHD and GVL. The absence of DNAM-1 on the donor graft attenuated GVHD in MHC-mismatched and MHC-matched BMT following conditioning with lethal and sublethal irradiation. In contrast, DNAM-1 was not critical for GVL effects against ligand (CD155)-expressing and non-expressing leukemia. The effects on GVHD following myeloablative conditioning were independent of CD8(+) T cells and dependent on CD4(+) T, and specifically donor FoxP3(+) regulatory T cells (T(reg)). The absence of DNAM-1 promoted the expansion and suppressive function of T(reg) after BMT. These findings provide support for therapeutic DNAM-1 inhibition to promote tolerance in relevant inflammatory based diseases characterized by T cell activation.
    Blood 02/2013; 121(17). DOI:10.1182/blood-2012-07-444026 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FoxP3(+) confers suppressive properties and is confined to regulatory T cells (T(reg)) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4(+) T(reg) are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8(+) population of FoxP3(+) T(reg) that convert from CD8(+) conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8(+) T(reg) undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-β. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4(+)FoxP3(+) population and is more potent in exerting class I-restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8(+)FoxP3(+) T(reg) are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8(+)FoxP3(+) T(reg) thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I-restricted T-cell responses after bone marrow transplantation.
    Blood 04/2012; 119(24):5898-908. DOI:10.1182/blood-2011-12-396119 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alloreactivity after transplantation is associated with profound immune suppression, and consequent opportunistic infection results in high morbidity and mortality. This immune suppression is most profound during GVHD after bone marrow transplantation where an inflammatory cytokine storm dominates. Contrary to current dogma, which avers that this is a T-cell defect, we demonstrate that the impairment lies within conventional dendritic cells (cDCs). Significantly, exogenous antigens can only be presented by the CD8(-) cDC subset after bone marrow transplantation, and inflammation during GVHD specifically renders the MHC class II presentation pathway in this population incompetent. In contrast, both classic and cross-presentation within MHC class I remain largely intact. Importantly, this defect in antigen processing can be partially reversed by TNF inhibition or the adoptive transfer of donor cDCs generated in the absence of inflammation.
    Blood 03/2012; 119(24):5918-30. DOI:10.1182/blood-2011-12-398164 · 9.78 Impact Factor
  • Biology of Blood and Marrow Transplantation 02/2012; 18(2):S225. DOI:10.1016/j.bbmt.2011.12.066 · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Olfactory ensheathing cells (OECs) support the regeneration of olfactory sensory neurons throughout life, however, it remains unclear how OECs respond to a major injury. We have examined the proliferation and migration of OECs following unilateral bulbectomy in postnatal mice. S100ß-DsRed and OMP-ZsGreen transgenic mice were used to visualize OECs and olfactory neurons, respectively, and we used the thymidine analogue ethynyl deoxyuridine (EdU) to identify cells that were proliferating at the time of administration. Following unilateral bulbectomy, there was an initial phase of OEC proliferation throughout the olfactory pathway with a peak of proliferation occurring 2 to 7 days after the injury. A second phase of proliferation also occurred in which precursors localized within the olfactory mucosa divided to replenish the OEC population. We then tracked the positions of OECs that had proliferated and found that there was a progressive increase in OECs in the cavity for at least 12 to 16 days after injury which could not be accounted for solely by local proliferation of OECs within the cavity. These results suggest that OECs migrated from the peripheral olfactory nerve to populate the mass of cells that filled cavity left by bulbectomy. Our results demonstrate that following injury to the olfactory nervous system, the OEC population is replenished by migration of cells that arise from both local proliferation of OECs throughout the olfactory nerve pathway as well as from precursor cells in the olfactory mucosa.
    Glia 02/2012; 60(2):322-32. DOI:10.1002/glia.22267 · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presentation pathways by which allogeneic peptides induce graft-versus-host disease (GVHD) are unclear. We developed a bone marrow transplant (BMT) system in mice whereby presentation of a processed recipient peptide within major histocompatibility complex (MHC) class II molecules could be spatially and temporally quantified. Whereas donor antigen presenting cells (APCs) could induce lethal acute GVHD via MHC class II, recipient APCs were 100-1,000 times more potent in this regard. After myeloablative irradiation, T cell activation and memory differentiation occurred in lymphoid organs independently of alloantigen. Unexpectedly, professional hematopoietic-derived recipient APCs within lymphoid organs had only a limited capacity to induce GVHD, and dendritic cells were not required. In contrast, nonhematopoietic recipient APCs within target organs induced universal GVHD mortality and promoted marked alloreactive donor T cell expansion within the gastrointestinal tract and inflammatory cytokine generation. These data challenge current paradigms, suggesting that experimental lethal acute GVHD can be induced by nonhematopoietic recipient APCs.
    Nature medicine 11/2011; 18(1):135-42. DOI:10.1038/nm.2597 · 28.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the effects of type II-IFN (IFN-γ) on GVHD and leukemia relapse are well studied, the effects of type I-interferon (type I-IFN, IFN-α/β) remain unclear. We investigated this using type I-IFN receptor-deficient mice and exogenous IFN-α administration in established models of GVHD and GVL. Type I-IFN signaling in host tissue prevented severe colon-targeted GVHD in CD4-dependent models of GVHD directed toward either major histocompatibility antigens or multiple minor histocompatibility antigens. This protection was the result of suppression of donor CD4(+) T-cell proliferation and differentiation. Studies in chimeric recipients demonstrated this was due to type I-IFN signaling in hematopoietic tissue. Consistent with this finding, administration of IFN-α during conditioning inhibited donor CD4(+) proliferation and differentiation. In contrast, CD8-dependent GVHD and GVL effects were enhanced when type I-IFN signaling was intact in the host or donor, respectively. This finding reflected the ability of type I-IFN to both sensitize host target tissue/leukemia to cell-mediated cytotoxicity and augment donor CTL function. These data confirm that type I-IFN plays an important role in defining the balance of GVHD and GVL responses and suggests that administration of the cytokine after BM transplantation could be studied prospectively in patients at high risk of relapse.
    Blood 06/2011; 118(12):3399-409. DOI:10.1182/blood-2010-12-325746 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell surface carbohydrates define subpopulations of primary olfactory neurons whose axons terminate in select glomeruli in the olfactory bulb. The combination of carbohydrates present on axon subpopulations has been proposed to confer a unique identity that contributes to the establishment of the olfactory topographic map. We have identified a novel subpopulation of primary olfactory neurons in mice that express blood group carbohydrates with GalNAc-ß1,4[NeuAcα 2,3]Galß1 residues recognised by the CT1 antibody. The CT1 carbohydrate has been shown to modulate adhesion of nerve terminals to the extracellular matrix and to synaptic proteins. The axons of the CT1-positive primary olfactory neurons terminate in a subpopulation of glomeruli in the olfactory bulb. Four lines of evidence support the view that CT1 glomeruli are topographically fixed. First, CT1 glomeruli were restricted predominantly to the dorsomedial olfactory bulb and were absent from large patches of the ventrolateral bulb. Second, similar distributions were observed for CT1 glomeruli on both the left and right olfactory bulbs of each animal, and between animals. Third, CT1 glomeruli were typically present as small clusters of 2-4 glomeruli. Fourth, a single CT1 glomerulus was always apposed to the glomeruli innervated by axons expressing the M72 odorant receptor. We also show that the CT1 carbohydrate is lost in gain-of-function transgenic mice over-expressing the blood group A glycosyltransferase in which there is aberrant targeting of M72 axons. Taken together, these results suggest that the CT1 carbohydrate, together with other carbohydrates, contributes to axon guidance during the establishment of the olfactory topographic map.
    Molecular and Cellular Neuroscience 06/2011; 48(1):9-19. DOI:10.1016/j.mcn.2011.05.011 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research into the biology of the mammalian olfactory system would be greatly enhanced by transgenic reporter mice with cell-specific fluorescence. To this end we previously generated a mouse whose olfactory ensheathing cells (OECs) express DsRed driven by the S100ß promoter. We present here a transgenic reporter mouse whose olfactory sensory neurons express ZsGreen, driven by the olfactory marker protein (OMP) promoter. ZsGreen was very strongly expressed throughout the cytoplasm of olfactory sensory neurons labelling them in living cells and after fixation. Labelled sensory neurons were seen in all olfactory regions in the nose and fluorescent axons coursed through the lamina propria and into the main and accessory bulbs. We developed methods for culturing embryonic and postnatal olfactory sensory neurons using these mice to visualise living cells in vitro. ZsGreen was expressed along the length of axons providing exceptional detail of the growth cones. The ZsGreen fluorescence was very stable, without fading during frequent imaging. The combination of OMP-ZsGreen and S100ß-DsRed transgenic mice is ideal for developmental studies and neuron-glia assays and they can be bred with mutant mice to dissect the roles of various molecules in neurogenesis, differentiation, axon growth and targeting and other aspects of olfactory sensory neuron and glia biology.
    Journal of neuroscience methods 03/2011; 196(1):88-98. DOI:10.1016/j.jneumeth.2011.01.008 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.
    Cellular and Molecular Life Sciences CMLS 02/2011; 68(19):3233-47. DOI:10.1007/s00018-011-0630-9 · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During development of the primary olfactory system, sensory axons project from the nasal cavity to the glomerular layer of the olfactory bulb. In the process axons can branch inappropriately into several glomeruli and sometimes over-shoot the glomerular layer, entering the deeper external plexiform layer. However in the adult, axons are rarely observed within the external plexiform layer. While chemorepulsive cues are proposed to restrict axons to the glomerular layer in the embryonic animal, these cues are clearly insufficient for all axons in the postnatal animal. We hypothesised that the external plexiform layer is initially an environment in which axons are able to grow but becomes increasingly inhibitory to axon growth in later postnatal development. We have determined that rather than having short localised trajectories as previously assumed, many axons that enter the external plexiform layer had considerable trajectories and projected preferentially along the ventro-dorsal and rostro-caudal axes for up to 950 μm. With increasing age, fewer axons were detected within the external plexiform layer but axons continued to be present until P17. Thus the external plexiform layer is initially an environment in which axons can extensively grow. We next tested whether the external plexiform layer became increasingly inhibitory to axon growth by microdissecting various layers of the olfactory bulb and preparing protein extracts. When assayed using olfactory epithelium explants of the same embryonic age, primary olfactory axons became increasingly inhibited by extract prepared from the external plexiform layer of increasingly older animals. These results demonstrate that primary olfactory axons can initially grow extensively in the external plexiform layer, but that during postnatal development inhibitory cues are upregulated that reduce axon growth within the external plexiform layer.
    Molecular and Cellular Neuroscience 09/2010; 46(1):282-95. DOI:10.1016/j.mcn.2010.09.012 · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The growth and guidance of primary olfactory axons are partly attributed to the presence of olfactory ensheathing cells (OECs). However, little is understood about the differences between the subpopulations of OECs and what regulates their interactions. We used OEC-axon assays and determined that axons respond differently to peripheral and central OECs. We then further purified OECs from anatomically distinct regions of the olfactory bulb. Cell behaviour assays revealed that OECs from the olfactory bulb were a functionally heterogeneous population with distinct differences which is consistent with their proposed roles in vivo. We found that the heterogeneity was regulated by motile lamellipodial waves along the shaft of the OECs and that inhibition of lamellipodial wave activity via Mek1 abolished the ability of the cells to distinguish between each other. These results demonstrate that OECs from the olfactory bulb are a heterogeneous population that use lamellipodial waves to regulate cell-cell recognition.
    Cellular and Molecular Life Sciences CMLS 02/2010; 67(10):1735-50. DOI:10.1007/s00018-010-0280-3 · 5.86 Impact Factor