A. Ortega

Instituto Español de Oceanografia, Madrid, Madrid, Spain

Are you A. Ortega?

Claim your profile

Publications (2)4.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibre-type differentiation of lateral musculature has been studied in gilthead sea bream Sparus aurata (L.) and sea bass Dicentrarchus labrax (L.) during post-larval development using ultrastructural, histochemical and morphometric techniques. The study showed three muscle layers: red, intermediate (or pink) and white. Initially, most of the red muscle showed low myosin ATPase (m-ATPase) activity fibres, whereas near the transverse septum some small high m-ATPase activity fibres appeared and later acquired a rosette aspect. Afterwards, during adult growth the red muscle showed a histochemical mosaic appearance. The pink muscle in sea bass was observed at the beginning of juvenile development by the oxidative technique (NADH-RT reaction) whereas in gilthead sea bream it was also observed at the end of larval development. The pink layer consists of high m-ATPase activity fibres. However, along the muscle development other low and moderate m-ATPase activity fibres were observed close to the red and white muscles, respectively. The white muscle of juvenile fish showed a histochemical mosaic appearance near the pink muscle. In adult specimens the mosaic white muscle spread out occupying the whole of the myotome. Morphometric analysis shows a significant increase in mean fibre diameter during post-larval development, as shown by the Student's t-test (hypertrophic growth). Skewness and kurtosis values of fibre diameters point to the generation of a new fibres from the myosatellite cells (hyperplastic growth).
    Anantomia Histologia Embryologia 02/1998; 27(1):21-9. · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibre-type differentiation of the lateral musculature has been studied in Sparus aurata (L.) and Dicentrarchus labrax (L.) during larval development. Histochemical and ultrastructural techniques show two presumptive muscle layers and two germinative zones of presumptive myoblasts. At hatching, myotomal muscle consists of a monolayer of thin undifferentiated cells near the skin (first germinative zone) overlying another mono-layer of small diameter fibres extending hypaxially and epaxially away from the transverse septum. Below this, there is a much thicker, deep layer of fibres, generally large in diameter and polygonal in shape. The presumptive myoblasts are located between these two layers of fibres in the second germinative zone. Initially, the superficial and deep muscle fibres show high and low myosin ATPase activity, respectively. Both layers grow by generating new fibres from the two mentioned germinative zones. At the end of larval life, the superficial layer changes its histochemical profile from high to low myosin ATPase activity and, at the same time, intermediate or pink muscle fibres can be observed by oxidative activity (the NADH-TR reaction). Morphometric analysis shows a significant increase in mean fibre diameter during successive ages, as shown by the Student's t-test (hypertrophic growth). Skewness and kurtosis values of fibre diameters point to the generation of a new fibre population from the germinative zones (hyperplastic growth).
    Cell and Tissue Research 04/1995; 280(2):217-224. · 3.68 Impact Factor