Are you Takeshi Takagaki?

Claim your profile

Publications (1)2.51 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics follows the changes in concentrations of endogenous metabolites, which may reflect various disease states as well as systemic responses to environmental, therapeutic, or genetic interventions. In this study, we applied metabolomic approaches to monitor dynamic changes in plasma and urine metabolites, and compared these metabolite profiles in Eisai hyperbilirubinemic rats (EHBR, an animal model of cholestasis) with those in the parent strain of EHBR - Sprague-Dawley (SD) rats - in order to characterize cholestasis pathophysiologically. Ultra-performance liquid chromatography/tandem mass spectrometry-based analytical methods were used to assay metabolite levels. More than 250 metabolites were detected in both plasma and urine, and metabolite profiles of EHBR differed from those of SD rats. The levels of antioxidative and cytoprotective metabolites, taurine and hypotaurine, were markedly increased in urine of EHBR. The levels of many bile acids were also elevated in plasma and urine of EHBR, but the extent of elevation depended on the particular bile acid. The levels of cytoprotective ursodeoxycholic acid and its conjugates were markedly elevated, while that of cytotoxic chenodeoxycholic acid remained unchanged, suggesting the balance of bile acids had shifted resulting in decreased toxicity. In EHBR, reduced biliary excretion leads to increased systemic exposure to harmful compounds including some endogenous metabolites. Our metabolomic data suggest that mechanisms exist in EHBR that compensate for cholestasis-related damage.
    Rapid Communications in Mass Spectrometry 07/2011; 25(13):1847-52. · 2.51 Impact Factor