Synneva Kjellevoll

Oslo University Hospital, Oslo, Oslo, Norway

Are you Synneva Kjellevoll?

Claim your profile

Publications (2)16.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cells mediating a graft-versus-leukemia/lymphoma effects without causing graft-versus-host disease would greatly improve the safety and applicability of hematopoietic stem cell transplantation. We recently demonstrated that highly peptide- and HLA-specific T cells can readily be generated against allogeneic HLA-A*02:01 in complex with a peptide from the B cell-restricted protein CD20. Here, we show that such CD20-specific T cells can easily be induced from naïve precursors in cord blood, demonstrating that they do not represent cross-reactive memory cells. The cells displayed high avidity and mediated potent cytotoxic effects on cells from patients with the CD20(pos) B cell malignancies follicular lymphoma (FL) and acute lymphoblastic leukemia (ALL). However, the cytotoxicity was consistently lower for cells from two of the ALL patients. The ALL cells that were less efficiently killed did not display lower surface expression of CD20 or HLA-A*02:01, or mutations in the CD20 sequence. Peptide pulsing fully restored the levels of cytotoxicity, indicating that they are indeed susceptible to T cell-mediated killing. Adoptive transfer of CD20-specific T cells to an HLA-A*02:01(pos) patient requires an HLA-A*02:01(neg) , but otherwise HLA identical, donor. A search clarified that donors meeting these criteria can be readily identified even for patients with rare haplotypes. The results bear further promise for the clinical utility of CD20-specific T cells in B cell malignancies.
    International Journal of Cancer 05/2011; 130(8):1821-32. · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The possibility that allogeneic T cells may be targeted to leukemia has important therapeutic implications. As most tumor antigens represent self-proteins, high-avidity tumor-specific T cells are largely deleted from the repertoire of the patient. In contrast, T cells from major histocompatibility complex (MHC)-mismatched donors provide naïve repertoires wherein such cells have not been systematically eliminated. Yet, evidence for peptide degeneracy or poly-specificity warrants caution in the use of foreign human leukocyte antigen (HLA) or peptide complexes as therapeutic targets. Here, we cocultured HLA-A(*)0201-negative T cells with autologous dendritic cells engineered to present HLA-A(*)0201 complexed with a peptide from the B cell antigen CD20 (CD20p). HLA-A(*)0201/CD20p pentamer-reactive CD8(+) T cells were readily obtained from all donors. The polyclonal cells showed exquisite peptide and MHC specificity, and efficiently killed HLA-A(*)0201-positive B cells, including primary chronic lymphocytic leukemia cells. The T cell receptor (TCR) sequences displayed a novel type of conservation, with extensive homology in the TCR β chain complementarity-determining region 3 and in J, but not V, region. This is surprising, as the donors were HLA disparate and their TCR repertoires are expected to show little overlap. The results demonstrate the first public recognition motif for an allogeneic HLA/peptide complex. The allo-restricted T cells or TCRs could provide graft-versus-leukemia in the absence of graft-versus-host disease.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 11/2010; 24(11):1901-9. · 10.16 Impact Factor