Pengfei Shi

Huazhong University of Science and Technology, Wu-han-shih, Hubei, China

Are you Pengfei Shi?

Claim your profile

Publications (4)12.73 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.
    PLoS ONE 12/2014; 9(12):e114581. DOI:10.1371/journal.pone.0114581 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is reported to exert anti-tumor effects by upregulating the expression of the natural killer group 2D (NKG2D) ligands on tumor cells; however, the mechanisms vary in different tumor types, and the effect and mechanism of action of VPA in pancreatic cancer cells are unknown.
    BMC Cancer 05/2014; 14(1):370. DOI:10.1186/1471-2407-14-370 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133(+) but not CD24(+)CD44(+)ESA(+) cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133(+) pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.
    PLoS ONE 05/2013; 8(5):e63969. DOI:10.1371/journal.pone.0063969 · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is one of the most lethal malignancies with poor prognosis. Previously, we found that a subpopulation of cancer stem cells (CSCs) in the Panc-1 pancreatic cancer cell line could propagate to form spheres. Here we characterized the malignant phenotypes of the pancreatic cancer stem CD44+/CD24+ cells, which were enriched under sphere forming conditions as analyzed by flow cytometry. These cells demonstrated increased resistance to gemcitabine and increased migration ability. Moreover, these cells exhibited epithelial to mesenchymal transition characterized by a decreased level of the epithelial marker E-cadherin and an increased level of the mesenchymal marker vimentin. Notably, abnormal expression of Bmi-1, ABCG2, Cyclin D1 and p16 were found in Panc-1 CSCs. Our results suggest that targeted inhibition of CSCs represents a novel therapeutic approach to overcome chemoresistance and metastasis of pancreatic cancer.
    International Journal of Molecular Sciences 12/2011; 12(3):1595-604. DOI:10.3390/ijms12031595 · 2.34 Impact Factor
    This article is viewable in ResearchGate's enriched format

Publication Stats

36 Citations
12.73 Total Impact Points

Institutions

  • 2011–2014
    • Huazhong University of Science and Technology
      • Department of Biliary-Pancreatic Surgery
      Wu-han-shih, Hubei, China
  • 2013
    • Wuhan Union Hospital
      Wu-han-shih, Hubei, China