L Elliot Hong

University of Maryland, Baltimore County, Baltimore, MD, United States

Are you L Elliot Hong?

Claim your profile

Publications (11)50.29 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews work published by the ENIGMA Consortium and its Working Groups (http://enigma.ini.usc.edu). It was written collaboratively; P.T. wrote the first draft and all listed authors revised and edited the document for important intellectual content, using Google Docs for parallel editing, and approved it. Some ENIGMA investigators contributed to the design and implementation of ENIGMA or provided data but did not participate in the analysis or writing of this report. A complete listing of ENIGMA investigators is available at http://enigma.ini.usc.edu/publications/the-enigma-consortium-in-review/ For ADNI, some investigators contributed to the design and implementation of ADNI or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators is available at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf The work reviewed here was funded by a large number of federal and private agencies worldwide, listed in Stein et al. (2012); the funding for listed consortia is also itemized in Stein et al. (2012).
    Brain Imaging and Behavior 01/2014; · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathways analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging METHODS: Transcriptome and GMT data were availabe for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican-American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. RESULTS: Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. CONCLUSION: Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation.
    NeuroImage 05/2013; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
    NeuroImage 04/2013; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study is the first to show a relationship between in-vivo brain gamma-amino butyric acid (GABA) levels and auditory inhibitory electrophysiological measures in schizophrenia. Results revealed a strong association between GABA levels and gating of the theta-alpha and beta activities in schizophrenia.
    The Journal of neuropsychiatry and clinical neurosciences 03/2013; 25(1):83-7. · 2.34 Impact Factor
  • Source
    Ivan Kramer, L Elliot Hong
    [Show abstract] [Hide abstract]
    ABSTRACT: The relative importance of genetics and the environment in causing schizophrenia is still being debated. Although the high proportion of monozygote cotwins of schizophrenia patients who are discordant suggests that there may be a significant environmental contribution to the development of schizophrenia, this discordance is predicted by an accumulative multimutation model of schizophrenia onset constructed here implying a genetic origin of schizophrenia. In this model, schizophrenics are viewed as having been born with the genetic susceptibility to develop schizophrenia. As susceptible gene carriers age, they randomly accumulate the necessary mutations to cause schizophrenia, the last needed mutation coinciding with disease onset. The mutation model predicts that the concordance rate in monozygote twin studies will monotonically increase with age, theoretically approaching 100% given sufficient longevity. In dizygote cotwins of schizophrenia patients, the model predicts that at least 71% of cotwins are incapable of developing schizophrenia even though every cotwin and their schizophrenic twin shared a similar early environment. The multimutation model is shown to fit all of the monozygote and dizygote concordance rate data of the principle classical twin studies completed before 1970 considered in this paper. Thus, the genetic hypothesis of schizophrenia can be tested by bringing these studies up to date.
    ISRN psychiatry. 01/2013; 2013:604587.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
    NeuroImage : clinical. 01/2013; 3:18-26.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is associated with a high prevalence of smoking. Functional connectivity between the dorsal anterior cingulate (dACC) and limbic regions including the ventral striatum, extended amygdala and parahippocampal areas has been previously implicated in the genetics and clinical severity of smoking. In this study, we test the hypothesis that dACC functional circuits are key paths for the high risk of smoking comorbidity in schizophrenia. Resting state functional magnetic resonance imaging (fMRI) was performed using the dACC as a seed region in smoking and nonsmoking patients with schizophrenia (n = 54), matched controls (n = 65), and nonpsychotic first-degree relatives (n = 24). Multiple regions had decreased connectivity with the dACC in schizophrenia patients when compared with matched controls (n = 65). Several of these functional circuits were also associated with nicotine addiction severity; the largest cluster included limbic areas such as the parahippocampal, extended amygdala, ventral striatal, and posterior insula regions, indicating an overlap of schizophrenia and nicotine addiction on to this circuit. These same functional connectivity-defined circuits were also significantly impaired in schizophrenia nonsmokers compared with control nonsmokers and in nonpsychotic first-degree relatives. Functional connectivity between the dACC and limbic regions is inherently abnormal in schizophrenia, related to its genetic liability regardless of smoking, and overlaps with a nicotine addiction-related circuit. Our findings establish a biologically defined brain circuit mechanism that contributes to the high prevalence of smoking.
    Schizophrenia Bulletin 12/2012; · 8.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Elevated rate of aging-related biological and functional decline, termed "accelerated aging," is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging derived fractional anisotropy (FA) as a biomarker of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. METHODS: The SCZ cohort comprised 58 SCZ patients and 60 controls (aged 20-60 years). The MDD cohort comprised 136 MDD patients and 351 controls (aged 20-79 years). The main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from 12 major WM tracts. RESULTS: Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p = .04) but not the MDD (p = .80) cohort. Diagnosis-by-age interaction was nominally significant (p<.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of-peak myelination and the rates of age-related decline obtained from normative sample (r =-.61 and-.80, p<.05, respectively). No such trends existed for MDD cohort. CONCLUSIONS: Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: WM tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort.
    Biological psychiatry 11/2012; · 8.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fractional anisotropy (FA) of water diffusion in cerebral white matter (WM), derived from diffusion tensor imaging (DTI), is a sensitive index of microscopic WM integrity. Physiological and metabolic factors that explain intersubject variability in FA values were evaluated in two cohorts of healthy adults of different age spans (N=65, range: 28-50years; and N=25, age=66.6±6.2, range: 57-80years). Single voxel magnetic resonance spectroscopy (MRS) was used to measure N-acetylaspartate (NAA), total choline-containing compounds, and total creatine, bilaterally in an associative WM tract: anterior corona radiata (ACR). FA values were calculated for the underlying, proximal and two distal WM regions. Two-stage regression analysis was used to calculate the proportion of variability in FA values explained by spectroscopy measurements, at the first stage, and subject's age, at the second stage. WM NAA concentration explained 23% and 66% of intersubject variability (p<0.001) in the FA of the underlying WM in the younger and older cohorts, respectively. WM NAA concentration also explained a significant proportion of variability in FA of the genu of corpus callosum (CC), a proximal WM tract where some of the fibers contained within the spectroscopic voxel decussate. NAA concentrations also explained a significant proportion of variability in the FA values in the splenium of CC, a distal WM tract that also carries associative fibers, in both cohorts. These results suggest that MRS measurements explained a significant proportion of variability in FA values in both proximal and distal WM tracts that carry similar fiber-types.
    NeuroImage 10/2012; · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and Purpose: We hypothesized that the P-selectin (SELP) gene, localized to a region on chromosome 1q24, pleiotropically contributes to increased blood pressure and cerebral atrophy. We tested this hypothesis by performing genetic correlation analyses for 13 mRNA gene expression measures from P-selectin and 11 other genes located in 1q24 region and three magnetic resonance imaging derived indices of cerebral integrity. Methods: The subject pool consisted of 369 (219F; aged 28-85, average = 47.1 ± 12.7 years) normally aging, community-dwelling members of large extended Mexican-American families. Genetic correlation analysis decomposed phenotypic correlation coefficients into genetic and environmental components among 13 leukocyte-based mRNA gene expressions and three whole-brain and regional measurements of cerebral integrity: cortical gray matter thickness, fractional anisotropy of cerebral white matter, and the volume of hyperintensive WM lesions. Results: From the 13 gene expressions, significant phenotypic correlations were only found for the P- and L-selectin expression levels. Increases in P-selectin expression levels tracked with decline in cerebral integrity while the opposite trend was observed for L-selectin expression. The correlations for the P-selectin expression were driven by shared genetic factors, while the correlations with L-selectin expression were due to shared environmental effects. Conclusion: This study demonstrated that P-selectin expression shared a significant variance with measurements of cerebral integrity and posits elevated P-selectin expression levels as a potential risk factor of hypertension-related cerebral atrophy.
    Frontiers in Genetics 01/2012; 3:65.
  • Source
    Lauren V Moran, L Elliot Hong
    [Show abstract] [Hide abstract]
    ABSTRACT: There is growing recognition that neural oscillations are important in a wide range of perceptual and cognitive functions. One of the key issues in electrophysiological studies of schizophrenia is whether high or low frequency oscillations, or both, are related to schizophrenia because many brain functions are modulated with frequency specificities. Many recent electrophysiological studies of schizophrenia have focused on high frequency oscillations at gamma band and in general support gamma band dysfunction in schizophrenia. We discuss the concept that gamma oscillation abnormalities in schizophrenia often occur in the background of oscillation abnormalities of lower frequencies. The review discusses the basic neurobiology for the emergence of oscillations of all frequency bands in association with networks of inhibitory interneurons and the convergence and divergence of such mechanisms in generating high vs low frequency oscillations. We then review the literature of oscillatory frequency abnormalities identified in each frequency band in schizophrenia. By describing some of the key functional roles exerted by gamma, low frequencies, and their cross-frequency coupling, we conceptualize that even isolated alterations in gamma or low frequency oscillations may impact the interactions of high and low frequency bands that are involved in key cognitive functions. The review concludes that studying the full spectrum and the interaction of gamma and low frequency oscillations may be critical for deciphering the complex electrophysiological abnormalities observed in schizophrenia patients.
    Schizophrenia Bulletin 07/2011; 37(4):659-63. · 8.80 Impact Factor

Publication Stats

81 Citations
50.29 Total Impact Points

Institutions

  • 2013
    • University of Maryland, Baltimore County
      • Department of Physics
      Baltimore, MD, United States
  • 2011–2013
    • University of Maryland Medical Center
      • Department of Psychiatry
      Baltimore, Maryland, United States
    • University of Maryland, Baltimore
      • Department of Psychiatry
      Baltimore, MD, United States