Yan Zhou

Shandong Agricultural University, Tai’an, Shandong Sheng, China

Are you Yan Zhou?

Claim your profile

Publications (9)30.23 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress.
    Plant Physiology and Biochemistry 07/2013; 71C:112-120. · 2.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades are important intracellular signaling modules and function as a convergent point for crosstalk during abiotic stress signaling. In this article, we isolated a novel group B MAPKK gene, ZmMKK3, from Zea mays. ZmMKK3 protein might be localized in both the cytoplasm and the nucleus. RNA blot analysis indicated that the ZmMKK3 transcription was up-regulated by abscisic acid (ABA), hydrogen peroxide (H(2)O(2)) and PEG, and that H(2)O(2) mediated PEG-induced expression of ZmMKK3. Constitutive expression of ZmMKK3 in Nicotiana tabacum reduced H(2)O(2) accumulation under osmotic stress by affecting antioxidant defense systems and alleviated reactive oxygen species-mediated injury under oxidative stress. Transgenic tobacco exhibited attenuated ABA sensitivity by means of an increased germination rate and main root growth. Taken together, these results indicate that ZmMKK3 is a positive regulator of osmotic tolerance and ABA signaling in plants.
    Journal of plant physiology 07/2012; 169(15):1501-10. · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In this study, we found that ZmMPK4 protein was predominantly localized in the nucleus. Semi-quantitative RT-PCR analysis revealed that the ZmMPK4 transcription in maize leaves was up-regulated by low temperature, high temperature and exogenous signaling molecules such as hydrogen peroxide, methyl jasmonate and ethephon. Hydrogen peroxide acted as second messenger to mediate 4°C-induced up-regulation of ZmMPK4 mRNA. Transgenic tobacco of overexpressing ZmMPK4 accumulated less reactive oxygen species (ROS), more peroxidase and catalase activities, more proline and soluble sugar contents, and more stress-responsive genes expression, leading to enhancing low temperature stress tolerance compared to the control plants. Taken together, these results strongly suggest that ZmMPK4 positively regulates low temperature stress tolerance in plants.
    Plant Physiology and Biochemistry 07/2012; 58:174-81. · 2.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various organisms produce HSPs in response to high temperature and other stresses. The function of heat shock proteins, including small heat shock protein (sHSP), in stress tolerance is not fully explored. To improve our understanding of sHSPs, we isolated ZmHSP16.9 from maize. Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. ZmHSP16.9 expressed in root, leaf and stem tissues under 40 °C treatment, and was up-regulated by heat stress and exogenous H₂O₂. Overexpression of ZmHSP16.9 in transgenic tobacco conferred tolerance to heat and oxidative stresses by increased seed germination rate, root length, and antioxidant enzyme activities compared with WT plants. These results support the positive role of ZmHSP16.9 in response to heat stress in plant. KEY MESSAGE: The overexpression of ZmHSP16.9 enhanced tolerance to heat and oxidative stress in transgenic tobacco.
    Plant Cell Reports 04/2012; 31(8):1473-84. · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant mitogen-activated protein kinase (MAPK) cascades play a pivotal role in a range of biotic and abiotic stress responses. In this study, we isolated a novel group D MAPK gene, ZmMPK17, from maize (Zea mays L.). ZmMPK17 is localized mainly to the nucleus and its C-terminal domain extension is believed to be essential for this. Northern-blot analysis indicated that ZmMPK17 transcription is involved in response to exogenous signaling molecules such as abscisic acid, hydrogen peroxide, salicylic acid, jasmonic acid and ethylene and induced by low temperature and osmotic stress. Hydrogen peroxide and Ca²⁺ mediate PEG-induced downregulation of ZmMPK17 at transcription level and Ca²⁺ also mediates low temperature-induced expression of ZmMPK17. Overexpression of ZmMPK17 in tobacco (Nicotonia tobaccum) accumulated less reactive oxygen species under osmotic stress by affecting antioxidant defense systems. Transgenic tobacco exhibited enhanced tolerance to cold by means of an increased germination rate, and increased proline and soluble sugar levels relative to control plants. The transcription levels of NtERD10 genes were higher in ZmMPK17-overexpressing lines than in control plants under cold and osmotic stress conditions. ZmMPK17-overexpressing plants displayed enhanced resistance to viral pathogens, and the expression of the pathogenesis-related gene PR1a was significantly increased, indicating that ZmMPK17 might be involved in SA-mediated pathogen defense-signaling pathways.
    Planta 10/2011; 235(4):661-76. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase kinase (MAPKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in regulating both plant development and biotic or abiotic stress responses. In this study, we identified the group C MAPKK gene, ZmMKK4, in maize (Zea mays L.). Overexpression of ZmMKK4 in tobacco enhanced tolerance to osmotic stress by increased proline content and antioxidant enzyme (POD) activities compared with wild-type plants. RT-PCR revealed that one peroxidase (POX) gene, NtPOX1, was higher in ZmMKK4-overexpressing plants than in the wild-type plants. In addition, the accumulation of reactive oxygen species (ROS) in ZmMKK4-overexpressing plants is much less than that of wild-type plants. These results suggest that ZmMKK4 may be involved in ROS signaling. Taken together, these results indicate that ZmMKK4 is a positive regulator of osmotic stress by regulating scavenging of ROS in plants.
    Plant Cell Reports 07/2011; 30(11):2097-104. · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase (MAPK) cascade constitutes a conserved signaling module in eukaryotes. MAPK kinase (MAPKK) plays a crucial role in a MAPK cascade. ZmMEK1 is the first characterized MAPKK gene in maize. Although ZmMEK1 has been studied in detail in biochemical level, the genomic organization of ZmMEK1 gene is obscure. In this research, we clarified ZmMEK1 is a single-copy gene in the maize genome. Southern blot analysis using 3' specific region of ZmMEK1 cDNA as a probe revealed the presence of distinct single bands in each lane of EcoRI and HindIII. Although previous Southern blot analysis using full-length ZmMEK1 cDNA as a probe revealed several hybridizing bands, we showed here that all bands come from one genomic fragment corresponding to ZmMEK1 gene. Furthermore, ZmMEK1 was induced by PEG, abscisic acid (ABA), and salicylic acid (SA) and was down-regulated by NaCl.
    Molecular Biology Reports 06/2011; 39(3):2957-66. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades are signalling modules that transduce extracellular signalling to a range of cellular responses. Plant MAPK cascades have been implicated in development and stress response. In this study, we isolated a novel group C MAPKK gene, ZmMKK4, from maize. Northern blotting analysis revealed that the ZmMKK4 transcript expression was up-regulated by cold, high salt and exogenous H(2)O(2,) but down-regulated by exogenous abscisic acid (ABA). Over-expression of ZmMKK4 in Arabidopsis conferred tolerance to cold and salt stresses by increased germination rate, lateral root numbers, plant survival rate, chlorophyll, proline and soluble sugar contents, and antioxidant enzyme [peroxidase (POD), catalase (CAT)] activities compared with control plants. Furthermore, ZmMKK4 enhanced a 37 kDa kinase activity after cold and salt stresses. RT-PCR analysis revealed that the transcript levels of stress-responsive transcription factors and functional genes were higher in ZmMKK4-over-expressing plants than in control plants. In addition, ZmMKK4 protein is localized in the nucleus. Taken together, these results indicate that ZmMKK4 is a positive regulator of salt and cold tolerance in plants.
    Plant Cell and Environment 04/2011; 34(8):1291-303. · 5.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. Linking upstream MAPK kinase kinase (MAPKKK) to downstream MAPK, MAPK kinase (MAPKK) plays a crucial role in MAPK cascade. MAPKK6 is one member of the MAPKK family. In this study, we have found that plant MAPKK6 genes are widely distributed in different plant species, including moss, seedless vascular plants, gymnosperms, and angiosperms. However, no MAPKK6 can be found in genomes of algae. Analysis of exon–intron organization and intron phase showed that plant MAPKK6s are highly conserved genes during plant evolution. In Physcomitrella patens, Selaginella moellendorffii, and Picea glauca, MAPKK6s exist as multicopy genes. In most high plants, however, MAPKK6s exist as single-copy. Phylogenetic analysis indicated that the occurrence of single-copy of MAPKK6s in high plants is likely because of genomic copy-number loss. KeywordsGene evolution–Gene origin– MAPKK6s –Single-copy
    Plant Molecular Biology Reporter 29(4):859-865. · 5.32 Impact Factor