Thomas L ter Laak

KWR Watercycle Research Institute, Nieuwegen, Utrecht, Netherlands

Are you Thomas L ter Laak?

Claim your profile

Publications (26)111.87 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: One of the main challenges in environmental risk assessment of fullerenes is to develop analytical methods that detect and quantify fullerenes at low concentrations. In this paper we report on the development and optimization of a highly specific, robust, and relatively simple method for the quantitative determination of C60, C70, and six functionalized fullerenes, namely, [6,6]-phenyl-C61-butyric acid methyl ester, [6,6]-phenyl-C61-butyric acid butyl ester, [6,6]-phenyl-C61-butyric acid octyl ester, [6,6]-bis(phenyl)-C61-butyric acid methyl ester, [6,6]-thienyl-C61-butyric acid methyl ester, and [6,6]-phenyl-C71-butyric acid methyl ester ([70PCBM], in different aqueous matrixes. For this method fullerenes were extracted from the aqueous phase using solid-phase extraction (SPE), with subsequent analysis on a liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) system. SPE was optimized by varying different conditions to improve recovery of all fullerenes. Different SPE column materials (C18, C18e, C8, CN) were tested, and recoveries appeared to be the highest for the C18-material. Recoveries were improved by adding NaCl to the water during extraction. Very low limit of detection (LOD) values were obtained for all compounds with this method, ranging from 0.17 ng/L for [70]PCBM to 0.28 ng/L for C60, and subsequent limit of quantitation (LOQ) values of 0.57-0.91 ng/L. Recoveries for the fullerenes were on average 120% in ultrapure and drinking water. Recoveries appeared to be lower, but still acceptable (e.g., >78%), in surface water. The developed approach is promising and will be applied, for example, in (1) environmental monitoring, (2) a more in-depth study of environmental fate and transformation products, and (3) studying water treatment efficiency of C60, C70, and the various functionalized fullerenes.
    Analytical Chemistry 05/2013; · 5.70 Impact Factor
  • Mathijs Oosterhuis, Frank Sacher, Thomas L Ter Laak
    [show abstract] [hide abstract]
    ABSTRACT: Local consumption data of pharmaceuticals were used to study the emission to wastewater and surface waters in two small Dutch water catchments. For nine high consumption pharmaceuticals: metformin, metoprolol, sotalol, losartan, valsartan, irbesartan, hydrochlorothiazide, diclofenac and carbamazepine, predicted emissions were compared to wastewater concentrations, removal in sewage treatment plants and recovery in regional surface water. The study shows that local consumption data can be very useful to select pharmaceuticals for monitoring and to predict wastewater concentrations. Measured influent concentrations were on average 78% with a range of 31-138% of predicted influent concentrations. Metformin is the pharmaceutical with the highest concentration in wastewater (64-98μg/L) but it is removed with >98% in sewage treatment plants (STP). Guanylurea, a biodegradation product of metformin, was detected in STP effluents and surface waters at concentrations of 39-56μg/L and 1.8-3.9μg/L, respectively. The STP removal of the different pharmaceuticals varied strongly. For carbamazepine, hydrochlorothiazide and sotalol a significant better removal was found at higher temperatures and longer hydraulic retention times while for metoprolol significantly better removal was only observed at higher temperatures. Predicting environmental concentrations from regional consumption data might be an alternative to monitoring of pharmaceuticals in wastewater and surface waters.
    Science of The Total Environment 11/2012; 442C:380-388. · 3.26 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).
    Water Research 07/2012; 46(16):5009-18. · 4.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The chemical water quality is often assessed by screening for a limited set of target chemicals. This 'conventional' target analysis approach inevitably misses chemicals present in the samples. In this study a 'broad' target screening approach for water quality assessment using high resolution and accurate mass spectrometry (HR MS) was applied to detect a wide variety of organic chemicals in 42 groundwater samples. In this approach, both known and unidentified chemicals observed in previous samples define the training set for the analysis of future samples and, additionally, new samples can be used to extend the training set. Nearly 400 chemicals were observed in the samples, of which 82 were known and more than 313 are of unknown identity. The obtained results were interpreted in relation to the source characteristics and land use. Groundwater that was affected by landfills showed the highest total MS response (ion counts) and most individual chemicals and was therefore considered most contaminated. Furthermore, river bank filtrated water was generally more contaminated than phreatic groundwater and groundwater from (semi)confined aquifers was most pristine. Additionally, industrial chemicals were more frequently observed in river bank filtrated water and pesticides were more frequently observed in water originating from rural areas. The 'broad' target screening approach for both known and unidentified chemicals does provide more information on the over-all water quality than 'conventional' target analysis.
    Science of The Total Environment 04/2012; 427-428:308-13. · 3.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention.
    Science of The Total Environment 04/2012; 427-428:70-7. · 3.26 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the sorption of the solutes onto these materials. Therefore, the sorption interactions of (charged) polar organic solutes to neutral (HLB), cation-exchanging (MCX, WCX), and anion-exchanging (MAX, WAX) OASIS polymers have been studied. For neutral solutes HLB has the highest capacity and affinity. Van der Waals interaction, rather than hydrogen bonding, appears to be the predominant factor determining sorption. For charged molecules, MCX and MAX show by far the highest affinity and capacity. Adsorption is already efficient at low concentrations and the maximum sorption capacity equals the amount of charged functional groups on the material. The results from this study allow semiquantitative predictions if a solute will adsorb on one of the OASIS materials and which functional groups govern adsorption.
    Environmental Science & Technology 12/2011; 46(2):954-61. · 5.26 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The application of engineered nanomaterials increases strongly. Development of analytical techniques and their application to environmental samples is essential for human and environmental risk assessment of the nanoparticles. The objective of this study was to develop a sensitive analytical method to quantify nC(60) in water, using accurate mass screening liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. nC(60) can be transformed by oxidation, reduction and photochemical reaction. Therefore, the formation of some transformation products of nC(60) was studied as well. Finally, the developed analytical method was applied to surface water samples from several locations in the Netherlands. The developed method enabled to detect and quantify aqueous concentrations of the summed nC(60) and its transformation products as low as 5 ng/L. It was observed that nC(60) transformation products exceed quantities of the parent C(60). Despite the high sensitivity of the developed method, no nC(60) or transformation products were detected in an array of Dutch surface waters. This might be due to low emissions, losses in the aqueous phase by sedimentation, sorption or further transformation processes.
    Environment international 08/2011; 37(6):1063-7. · 4.79 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In this study, pharmaceuticals were frequently monitored in the Rhine delta between the year 2002 and 2008. Average concentrations of several X-ray contrast mediums were above 0.1 microg/L, the average concentration of carbamazepine was about 0.1 microg/L, while average concentrations of the other pharmaceuticals generally fell between 0.1 and 0.01 microg/L. Concentrations were used to calculate annual loads transported by the Rhine at Lobith. These loads were compared to the annual sales upstream of Lobith. This mass balance approach shows that substantial fractions (1.1% to 70.4%) of the 20 most frequently observed pharmaceuticals sold in the Rhine catchment area are recovered in the Rhine at Lobith. The observed annual loads were compared to loads predicted from annual sales in the catchment area, excreted fractions by humans and removal by waste water treatment. Observed and predicted annual loads were rather similar. The difference of the loads obtained from monitoring data and estimated from consumption was smaller than a factor of seven and did not exceed a factor of two for 15 out of the 20 pharmaceuticals. This illustrates the potential of using sales data for the prediction of concentrations in the aqueous environment.
    Environment international 07/2010; 36(5):403-9. · 4.79 Impact Factor
  • Thomas L ter Laak, Martin A Ter Bekke, Joop L M Hermens
    [show abstract] [hide abstract]
    ABSTRACT: In this study, the uptake of pyrene and benzo[b]fluoranthene by an aquatic worm (Lumbriculus variegatus) and a poly(dimethylsiloxane) coated glass fiber was studied at different humic acid concentrations. The accumulation of pyrene was not affected by the presence of the humic matrix. However, the accumulation rate of benzo[b]fluoranthene increased a factor of 3 for the fiber and a factor of 4 when 55 mg L(-1) dissolved organic carbon was added in the form of humic acid. The difference between the two chemicals can be explained by the higher affinity of benzo[b]fluoranthene for the dissolved humic material. A comparison of modeled transport enhancement of benzo[b]fluoranthene by humic acid and the experimental results suggested that the benzo[b]fluoranthene complexed with the humic phase was not completely labile.
    Environmental Science and Technology 12/2009; 43(23):9044. · 5.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: An insight into the dynamic aspects of the accumulation process is essential for understanding bioaccumulation as well as effect studies of hydrophobic organic chemicals. This review presents an overview of kinetic studies with organisms (fish, bivalve, crustacean, insect, worm, algae, and protozoan) as well as passive samplers (solid and liquid phase microextraction, semipermeable membrane device, polymer sheet, solid-phase extraction, Chemcatcher, etc.) for the uptake of neutral nonpolar chemicals from the aqueous phase. Information about uptake rates, elimination rates, and 95% equilibration times was collected and analyzed with diffusion based models. The present literature review suggests that the surface to volume ratio appears to be a critical parameter for the uptake rate of the more hydrophobic chemicals both for samplers and organisms. In addition, as a very first approximation, the combination of the first-order kinetic model with the assumption that diffusion through the aqueous boundary layers is rate limiting, gives a reasonable description of the experimental kinetic data. In this way, the presented model might be used to estimate uptake and elimination rate constants of chemicals by organisms or passive samplers.
    Environmental Science and Technology 05/2009; 43(7):2206-15. · 5.26 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The exchange rate of hydrophobic organic chemicals between the aqueous phase and a sorbent (e.g., soil, organism, passive sampler) is relevant for distribution processes between environmental compartments, including organisms. Dissolved phases such as humic acids, proteins, and surfactants can affect the transfer of such chemicals between the aqueous and sorbent phases by sorption and desorption processes. In this study, the desorption of polychlorinated biphenyls and polybrominated diphenyl ethers from a polymer phase to an aqueous medium was monitored at different humic acid concentrations. The rate of release of the chemical by the polymer phase demonstrates thatthe chemical sorbed to dissolved humic acid contributed significantly to the total mass transfer when the affinity for the humic acid was sufficiently high. This illustrates that environmentally relevant humic acid concentrations can facilitate transport of hydrophobic organic chemicals. The consequences of these facilitated transport mechanisms for uptake into passive samplers are discussed, in particular in situations where equilibration is very slow or when exposure varies in time or space.
    Environmental Science and Technology 04/2009; 43(5):1379-85. · 5.26 Impact Factor
  • Thomas L ter Laak, Frans J M Busser, Joop L M Hermens
    [show abstract] [hide abstract]
    ABSTRACT: Information about sampling rates and equilibration times of passive samplers is essential in their calibration in field monitoring studies as well as sorption studies. The kinetics of a sampler depends on the distribution coefficient between the sampler material and aqueous phase and the exchange rates of chemicals between these phases. In this study, the elimination kinetics of four poly(dimethylsiloxane) (PDMS) passive samplers with different surface-volume ratios are compared. The samplers were loaded with polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) that cover a broad range of hydrophobicities. The surface-volume ratios of the samplers could largely explain the observed kinetics. Furthermore, a simple diffusion-based model illustrates that the exchange of chemicals was limited by diffusion through the aqueous diffusion layer surrounding the sampler. On the basis of this simple diffusion model, equilibration times are predicted for organic chemicals that vary in hydrophobicity and samplers with different dimensions and polymeric phases. This information is of importance in the selection of a passive sampler for a specific purpose.
    Analytical Chemistry 06/2008; 80(10):3859-66. · 5.70 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study aimed to monitor PAC availability to the oligochaete Lumbriculus variegatus during 28 days of exposure to spiked sediments, in order to obtain reliable chronic effect concentrations for reproduction. Sediment toxicity tests were performed using three pairs of PAC isomers: two homocyclic compounds (anthracene and phenanthrene), two azaarenes (acridine and phenanthridine), and the two main transformation products of the azaarenes (acridone and phenanthridone). During the experiment, available PAC concentrations in pore water (estimated using solid phase microextraction) decreased more than total PAC concentrations in the sediment. Relating effect concentrations to PAC concentrations in pore water and in organisms showed that the two homocyclic compounds caused narcotic effects during chronic exposure, but only one of the four tested heterocyclic PACs caused narcotic effects. The transformation product phenanthridone was not toxic at the tested concentrations (up to 4000 micromol/kg dry sediment), whereas EC50 values for the parent compound phenanthridine and the isomer acridone were below the estimated limit for narcosis, suggesting a specific mode of action. These results demonstrated the unpredictable (isomer) specific toxicity of azaarenes and their transformation products, emphasizing the need of chronic toxicity testing to gain insight into the long-term effects of heterocyclic PACs, which have been overlooked in risk assessment.
    Environmental Science and Technology 05/2008; 42(9):3434-40. · 5.26 Impact Factor
  • Karim Benhabib, Thomas L ter Laak, Herman P van Leeuwen
    [show abstract] [hide abstract]
    ABSTRACT: The temporal evolution of diffusion-controlled analyte accumulation in solid-phase microextraction (SPME) is critically discussed in terms of the various aspects of steady-state diffusion in the two phases under conditions of fast exchange of the analyte at the solid phase film/water interface. For partition coefficients (K(sw)) much larger than unity and a sufficiently thin polymer film, the concentration gradient of the analyte in the polymer phase is largely insignificant. The growth of the accumulated amount of analyte is then adequately described by the well-known exponential expression for steady-state diffusion under non-depletive conditions, provided the initial transient stage is properly taken into account. In case of fiber-type solid phases, the cylindrical nature of the diffusion complicates the nature of the transient stage as well as the magnitude of the steady-state flux.
    Analytica chimica acta 03/2008; 609(1):113-9. · 4.31 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Some sediment toxicity tests, such as the Microtox test, are conducted by diluting either contaminated sediment or an aqueous phase with clean water. The present study aims to clarify how the dilution procedure affects the exposure of organisms. It is shown that freely dissolved concentrations of hydrophobic compounds are buffered by desorption from the sediment matrix when sediment is diluted with water. The buffering depends on the properties of the sediment matrix and contaminant. Consequently, the composition of a contaminant mixture changes with dilution, and the exposure in a sediment dilution toxicity test is poorly defined. This questions the application and subsequent assessments of such tests. Additionally, the often-observed higher toxicity in sediment dilution tests relative to elutriate dilution tests is not sufficient to claim direct contact exposure, because the enhanced sensitivity in sediment dilution tests also can be explained by buffering from the sediment matrix. In applying these tests, one should be aware of the fundamental differences between the sediment dilution strategy and the dilution of an aqueous phase and of the consequences it has for the outcome of the test.
    Environmental Toxicology and Chemistry 11/2007; 26(10):2187-91. · 2.62 Impact Factor
  • Source
    Thomas L ter Laak, Arjan Barendregt, Joop L M Hermens
    [show abstract] [hide abstract]
    ABSTRACT: Field contaminated soils are often homogenized before application in bioassays and chemical assays that estimate the (bio)availability of their contaminants. The homogenization of the soil might affect the availability, and thereby the outcome of a bioassay might not reflect field situations. In this study, uptake kinetics of polycyclic aromatic hydrocarbons (PAH) by a negligible depletive passive sampler exposed to a ground and non-ground field contaminated soil were tested. The measurements illustrate how freely dissolved pore water concentrations of contaminants can be affected by soil treatment. It took more than a month, and over a year to reach steady state in the passive sampler exposed to the ground and non-ground soil, respectively. The uptake rate seemed to be limited by desorption from the soil, even though the fiber only extracted 0.2% of the soil-sorbed PAH at maximum. If these observations are translated to the field situation, where contaminants are not homogeneously distributed and disappear by (bio)degradation or physical transport processes, it is unlikely that pore water concentrations are solely determined by a thermodynamic equilibrium. Hence, exposure of organisms in these soils cannot always be estimated by sorption studies and an equilibrium partitioning approach.
    Chemosphere 10/2007; 69(4):613-20. · 3.14 Impact Factor
  • Joop L M Hermens, Minne B Heringa, Thomas L ter Laak
    [show abstract] [hide abstract]
    ABSTRACT: The dose is an essential element in toxicology and risk assessment. In most cases, the dose is expressed as a concentration in the external environment. The internal dose is a more direct measure for the exposure in toxicological assays, because it takes differences in bioavailability into account. Because the internal dose is often not measurable, the effective free concentration in a medium or the environment is a useful alternative. This short review discusses the advantages of free concentration measurements of organic compounds for interpretation of effects in sediment and soil tests as well as for in vitro assays.
    Journal of Toxicology and Environmental Health Part A 06/2007; 70(9):727-30. · 1.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Dissolved organic carbon/water distribution coefficients (K(DOC)) were measured for a selection of PCBs with octanol/water partition coefficients (K(OW)) ranging from 10(5.6) to 10(7.5). A solid phase dosing and sampling technique was applied to determine K(DOC) to Aldrich humic acid. This technique is in particular suitable for determining the distribution of very hydrophobic chemicals to complex matrices like humic acids. The K(DOC) values were calculated from the experimental data using a linear model. Determined K(DOC)'s were evaluated in relation to octanol/water partition coefficients of the test compounds, and compared to literature data. Measured K(DOC) values were somewhat higher than literature data, which can probably be attributed to the overestimation of freely dissolved aqueous concentration as a result of incomplete phase separation in other studies, and to the unique character of Aldrich humic acid as a "sorbent" or co-solute or to the fact that Aldrich humic acid is not a typical DOC, and other (adsorption) processes can occur. This study reports DOC distribution coefficients that belong to the highest ones ever measured. In addition, the DOC distribution was discussed in relation to current risk assessment modeling.
    Chemosphere 04/2007; 67(5):990-7. · 3.14 Impact Factor
  • Thomas L ter Laak, Wouter A Gebbink, Johannes Tolls
    [show abstract] [hide abstract]
    ABSTRACT: Environmental exposure assessment of veterinary pharmaceuticals requires estimating the sorption to soil. Soil sorption coefficients of three common, ionizable, antimicrobial agents (oxytetracycline [OTC], tylosin [TYL], and sulfachloropyridazine [SCP]) were studied in relation to the soil properties of 11 different soils. The soil sorption coefficient at natural pH varied from 950 to 7,200, 10 to 370, and 0.4 to 35 L/kg for OTC, TYL, and SCP, respectively. The variation increased by almost two orders of magnitude for OTC and TYL when pH was artificially adjusted. Separate soil properties (pH, organic carbon content, clay content, cation-exchange capacity, aluminum oxyhydroxide content, and iron oxyhydroxide content) were not able to explain more than half the variation observed in soil sorption coefficients. This reflects the complexity of the sorbent-sorbate interactions. Partial-least-squares (PLS) models, integrating all the soil properties listed above, were able to explain as much as 78% of the variation in sorption coefficients. The PLS model was able to predict the sorption coefficient with an accuracy of a factor of six. Considering the pH-dependent speciation, species-specific PLS models were developed. These models were able to predict species-specific sorption coefficients with an accuracy of a factor of three to four. However, the species-specific sorption models did not improve the estimation of sorption coefficients of species mixtures, because these models were developed with a reduced data set at standardized aqueous concentrations. In conclusion, pragmatic approaches like PLS modeling might be suitable to estimate soil sorption for risk assessment purposes.
    Environmental Toxicology and Chemistry 05/2006; 25(4):933-41. · 2.62 Impact Factor
  • Source
    Thomas L ter Laak, Arjan Barendregt, Joop L M Hermens
    [show abstract] [hide abstract]
    ABSTRACT: Freely dissolved aqueous concentrations in the soil pore water represent an important aspect of bioavailability and risk assessment of contaminated soils. In this study, a negligible depletive partitioning based sampling technique was validated and applied to measure free concentrations of polycyclic aromatic hydrocarbons (PAHs) in spiked, aged and field-contaminated soils. Detailed kinetic studies were performed to select appropriate equilibration times. Freely dissolved aqueous concentrations in the pore water were compared to total concentrations, and sorption coefficients were calculated. Results show that equilibrium partition models can predict sorption coefficients of freshly spiked and lab-aged soils rather accurately. However, freely dissolved pore water concentrations of field-contaminated soils are orders of magnitude lower than model predictions. Consequently, environmental risks can be highly overestimated with these models. The simple and sensitive partitioning-based sampling technique used in this study, could, therefore, be applicable to improve site-specific risk assessment of field-contaminated soils.
    Environmental Science and Technology 05/2006; 40(7):2184-90. · 5.26 Impact Factor