Pilje Kim

National Institute of Environmental Research, Sŏul, Seoul, South Korea

Are you Pilje Kim?

Claim your profile

Publications (24)37.57 Total impact

  • 02/2015; 41(1):17-23. DOI:10.5668/JEHS.2015.41.1.17
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was conducted to investigate the potential subchronic toxicity of triclosan (TCS) in rats following 28 days of exposure by repeated inhalation. Four groups of six rats of each sex were exposed to TCS-containing aerosols by nose-only inhalation of 0, 0.04, 0.13, or 0.40 mg/L for 6 h/day, 5 days/week over a 28-day period. During the study period, clinical signs, mortality, body weight, food consumption, ophthalmoscopy, hematology, serum biochemistry, gross pathology, organ weights, and histopathology were examined. At 0.40 mg/L, rats of both sexes exhibited an increase in the incidence of postdosing salivation and a decrease in body weight. Histopathological alterations were found in the nasal septum and larynx. There were no treatment-related effects in rats of either sex at ⩽0.13 mg/L. Under the present experimental conditions, the target organs in rats were determined to be the nasal cavity and larynx. The no-observed-adverse-effect concentration in rats was determined to be 0.13 mg/L.
    Regulatory Toxicology and Pharmacology 01/2015; 160(2). DOI:10.1016/j.yrtph.2015.01.004 · 2.14 Impact Factor
  • 10/2014; 40(5):397-406. DOI:10.5668/JEHS.2014.40.5.397
  • Reproductive Toxicology 09/2014; 48. DOI:10.1016/j.reprotox.2014.07.051 · 2.77 Impact Factor
  • Molecular and Cellular Toxicology 03/2014; 10(1):41-45. DOI:10.1007/s13273-014-0005-z · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal-based nanoparticles (NPs) such as silver (Ag) and titanium dioxide (TiO2) are widely used in industrial and household applications. Because of the increasing use of such manufactured NPs and their release into the natural environment, NPs are likely to have a widespread geographic distribution. Concerns over discharge of considerable amounts of these NPs into the environment are increasing. Although recent studies have raised concerns about the health risks and environmental impacts of NPs, little is known about their environmental fate and behavior, particularly in aquatic ecosystems, which is the final destination of NPs due to precipitation and runoff. In this review, we discuss possible routes of environmental exposure as well as the occurrence, behavior, and bioaccumulation of Ag-NPs and TiO2-NPs in the environment.
    Molecular and Cellular Toxicology 03/2014; 10(1):9-17. DOI:10.1007/s13273-014-0002-2 · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increase in the use of manufactured nanomaterials (NMs) has led to concerns about the environmental impacts. Especially, hazard of metal-based NMs is more severe due to ions released from surface by water quality parameters and physicochemical properties after entering into the water environment. However, little is known about the effects of ionization on the toxicity of metal-based NMs in the water environment. To address this question, we prepared the suspensions of silver nanoparticles (AgNP) at 25 μg L(-1) containing different concentrations of Ag(+) (5, 10, 20, 45, and 75% Ag(+) to total Ag), and evaluated their toxicity to Japanese medaka (Oryzias latipes) embryos. Higher Ag(+) ratios in the AgNP suspension, suggesting the lower number of particles, led to the higher adverse effects on embryos and sac-fries. In addition, histopathology analysis revealed that AgNPs penetrated through chorion of eggs and skin membrane, and were distributed into the tissues. The results imply that the ionization could decrease the toxicity of metal-based NMs in the water environment.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2014; 49(3):287-93. DOI:10.1080/10934529.2014.846614 · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Combined repeated-dose toxicity study of citrate-capped silver nanoparticles (7.9 ± 0.95 nm) with reproduction/developmental toxicity was investigated in rats orally treated with 62.5, 125 and 250 mg/kg, once a day for 42 days for males and up to 52 days for females. The test was performed based on the Organization for Economic Cooperation and Development test guideline 422 and Good Laboratory Practice principles. No death was observed in any of the groups. Alopecia, salivation and yellow discolouration of the lung were observed in a few rats but the symptoms were not dose-dependent. Haematology, serum biochemical investigation and histopathological analysis revealed no statistically significant differences between control group and the treated groups. Toxicity endpoints of reproduction/developmental screening test including mating, fertility, implantation, delivery and foetus were measured. There was no evidence of toxicity.
    Nanotoxicology 12/2013; 8(4). DOI:10.3109/17435390.2013.780108 · 7.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.
    Natural product communications 09/2013; 8(9):1301-4. · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aluminum nanoparticles (Al-NPs) are one of the most widely used nanomaterial in cosmetics and medical materials. For this reason, Al-NP exposure is very likely to occur via inhalation in the environment and the workplace. Nevertheless, little is known about the mechanism of Al-NP neurotoxicity via inhalation exposure. In this study, we investigated the effect AL-NPs on the brain. Rats were exposed to Al-NPs by nasal instillation at 1 mg/kg body weight (low exposure group), 20 mg/kg body weight (moderate exposure group), and 40 mg/kg body weight (high exposure group), for a total of 3 times, with a 24-hr interval after each exposure. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated that the presence of aluminum was increased in a dose-dependent manner in the olfactory bulb (OFB) and the brain. In microarray analysis, the regulation of mitogen-activated protein kinases (MAPK) activity (GO: 0043405), including Ptprc, P2rx7, Map2k4, Trib3, Trib1, and Fgd4 was significantly over-expressed in the treated mice than in the controls (p = 0.0027). Moreover, Al-NPs induced the activation of ERK1 and p38 MAPK protein expression in the brain, but did not alter the protein expression of JNK, when compared to the control. These data demonstrate that the nasal exposure of Al-NPs can permeate the brain via the olfactory bulb and modulate the gene and protein expression of MAPK and its activity.
    09/2013; 29(3):181-5. DOI:10.5487/TR.2013.29.3.181
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxicokinetics of zinc oxide nanoparticles (ZnONP) was studied in rats via a single intravenous (iv) injection and a single oral administration (3 mg/kg or 30 mg/kg), respectively. Blood concentrations of zinc (Zn) were monitored for 7 d and tissue distribution were determined in liver, kidneys, lung, spleen, thymus, brain, and testes. To ascertain the excretion of ZnONP, Zn levels in urine and feces were measured for 7 d. ZnONP were not readily absorbed from the gastrointestinal tract (GIT) after oral administration and were excreted mostly in feces. When the nanoparticles were injected iv to rats at a dose of 30 mg/kg, peak concentration appeared at 5 min but returned to normal range by d 2 (48 h after injection). ZnONP were distributed mainly to liver, kidneys, lung, and spleen, but not to thymus, brain, and testes. The distribution level was significantly decreased to normal by d 7. Feces excretion levels after iv injection supported biliary excretion of ZnONP. In rats injected iv with 30 mg/kg, mitotic figures in hepatocytes were significantly increased and multifocal acute injuries with dark brown pigment were noted in lungs, while no significant damage was observed in rats treated orally with the same dosage. Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uteh.
    Toxicology Letters 08/2013; 221(4):S246-S247. DOI:10.1016/j.toxlet.2013.05.610 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The developmental toxicity of silver nanoparticles (AgNPs) was investigated following exposure of Oryzias latipes (medaka) embryos to 0.1-1 mg/L of homogeneously dispersed AgNPs for 14 days. During this period, developmental endpoints, including lethality, heart rate, and hatching rate, were evaluated by microscopy for different stages of medaka embryonic development. To compare toxic sensitivity, acute adult toxicity was assessed. There was no difference in acute lethal toxicity between embryo and adult medaka. Interestingly, we found that the increase in stepwise toxicity was dependent on the developmental stage of the embryo. Lethal embryonic toxicity increased from exposure days 1 to 3 and exposure days 5 to 8, whereas there was no change from exposure days 3 to 5. In addition, 7 d exposure to 0.8 mg/L AgNPs resulted in significant heart beat retardation in medaka embryos. AgNPs also caused a dose-dependent decrease in the hatching rate and body length of larvae. These results indicate that AgNP exposure causes severe developmental toxicity to medaka embryos and that toxicity levels are enhanced at certain developmental stages, which should be taken into consideration in assessments of metallic NPs toxicity to embryos.
    07/2013; 2013:494671. DOI:10.1155/2013/494671
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, physico-chemical properties and environmental fate were investigated and ecotoxicity tests using fish, daphnia and algae were conducted for an initial ecological risk assessment of 1,2-Benzisothiazol-3-one. Due to low volatility of the test substance under environmental conditions, it is likely to distributed in soil and water environment. The compound has low adsorption in the soil, with low bioconcentration potential. Acute toxicity results showed that 96 h- for Oryzias laties was 4.7 mg/L (measured) and 48h- for Daphnia magna was 3.3 mg/L (measured). In a growth inhibition test with Pseudokirchneriella subcapitata, 72 h- was 0.456 mg/L (growth rate, nominal) and 0.262 mg/L (yield, nominal). Using the acute toxicity value of algae, predicted no-effect concentration (PNEC) in the aquatic environment was determined to be 2.62 using an factor of 100. According to globally harmonized system (GHS), the compound was categorized as aquatic acute 1 for algae, while it was categorized as aquatic acute 2 for fish and daphnia. This screening assessment suggests that the test substance may pose ecological risks in the aquatic environment.
    03/2013; 35(3). DOI:10.4491/KSEE.2013.35.3.165
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemicals are widely used in our daily lives for various purposes such as disinfectant, air fresher, paints and hair spray. However, their pulmonary toxicity has less studied compared with oral and dermal toxicity. Therefore, the purpose of this study was to examine comparative cytotoxicity of triclosan (TCS), benzisothiazolinone (BIT), dichlorophene (DCP) and citral (CTR) major using spray-type chemicals used in household products (CHPs) in Korea. TCS, DCP and BIT induced more severe mitochondria injury and cell membrane damage than CTR in lung epithelial cell during 24 hrs exposure. Furthermore, the result of clonogenic assay revealed that exposure of CHPs significantly decreased colony size and that BIT reduced cell growth at most compared with TCS, DCP and CTR. In summary, results of comparative cytotoxicity demonstrated that inhalation of TCS, DCP and BIT may cause pulmonary toxicity. Therefore, our results suggest that TCS, BIT and DCP are requiring inhalation toxicity assessment for maintaining a high quality of life.
    Molecular and Cellular Toxicology 03/2013; 9(1). DOI:10.1007/s13273-013-0008-1 · 0.83 Impact Factor
  • 02/2013; 39(1):48-55. DOI:10.5668/JEHS.2013.39.1.48
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aggregate risk assessment on xylene and ethylbenzene was carried out according to the guidance established newly in 2010 with the purpose of providing information for risk management. In human exposure assessment, the results indicated that lower ages were exposed more and that, in the interior space at home, the highest level of human exposure occurred via inhalation. At outdoor spaces, exposures via inhalation and drinking were less than 1%. In human health risk characterization, xylene showed HI(Hazard Index) < 1 in all ages. When reasonable maximum exposure(RME) was applied, HI for young children was 0.64. The HI of ethylbenzene was also below 1(0.02~0.04) in all ages, indicating no potential risk. From this study, it is considered that xylene need to be continous monitoring with interest because this substance may be more sensitive on young age group. In additon, to reduce the uncertainty of the risk assessment, the korean exposure factors on young age group such as infant, children had to be established as soon as possible.
    02/2013; 22(2). DOI:10.5322/JESI.2013.22.2.163
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. THE RESULTS OF THE ECOTOXICITY TESTS OF TRICALCIUM PHOSPHATE AND CALCIUM HYDROGENORTHOPHOSPHATE ARE AS FOLLOWS: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC(50)) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC(50)) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC(50) was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C(50) was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.
    02/2013; 28:e2013002. DOI:10.5620/eht.2013.28.e2013002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triclosan (TCS) is a chemical compound used in household products as biocide. However, their pulmonary toxicity has been unclear. Thus, the purpose of this study was to investigate the possibility of injury to the lung by inhalation of TCS. Rats were exposed to TCS by single intratracheal instillation of 10 µg/B.W. kg for the low-dose group and 1,000 µg/B.W. kg for the high-dose group, respectively. TCS induced increase in the level of total cell (TC) count, polymorphonuclear leukocytes (PMNs), total protein (TP), lactate acid dehydrogenase (LDH), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) at 1 day after instillation. However, most pulmonary toxicity marker levels except TP in BALF were restored 14 days after instillation. In addition, TCS led to reduction of cell viability with morphological change in lung eptiehelial cells (L2 cell). Therefore, TCS may affect responses of acute inflammation and permeability in the lung.
    The Journal of Toxicological Sciences 01/2013; 38(3):471-475. DOI:10.2131/jts.38.471 · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m(3) for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m(3) in male rats and 0.9 mg/m(3) in female rats under the present experimental condition.
    The Journal of Toxicological Sciences 01/2013; 38(6):937-46. DOI:10.2131/jts.38.937 · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Juvenile common carp (Cyprinus carpio) were used as a model to investigate acute toxicity and oxidative stress caused by silver nanoparticles (Ag-NPs). The fish were exposed to different concentrations of Ag-NPs for 48 h and 96 h. After exposure, antioxidant enzyme levels were measured, including glutathione-S-transferase (GST), superoxidase dismutase, and catalase (CAT). Other biochemical parameters and histological abnormalities in different tissues (i.e., the liver, gills, and brain) were also examined. The results showed that Ag-NPs agglomerated in freshwater used during the exposure experiments, with particle size remaining <100 nm. Ag-NPs had no lethal effect on fish after 4 days of exposure. Biochemical analysis showed that enzymatic activities in the brain of the fish exposed to 200 μg/L of Ag-NPs were significantly reduced. Varied antioxidant enzyme activity was recorded in the liver and gills. Varied antioxidant enzyme activity was recorded for CAT in the liver and GST in the gills of the fish. However, the recovery rate of fish exposed to 200 μg/L of Ag-NPs was slower than when lower particle concentrations were used. Other biochemical indices showed no significant difference, except for NH(3) and blood urea nitrogen concentrations in fish exposed to 50 μg/L of Ag-NPs. This study provides new evidence about the effects of nanoparticles on aquatic organisms.
    BioMed Research International 10/2012; 2012:262670. DOI:10.1155/2012/262670 · 2.71 Impact Factor