Luca Gelsomino

Baylor College of Medicine, Houston, Texas, United States

Are you Luca Gelsomino?

Claim your profile

Publications (6)38.9 Total impact

  • Cancer Research 05/2015; 75(9 Supplement):PD6-6-PD6-6. DOI:10.1158/1538-7445.SABCS14-PD6-6 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to discover novel nuclear receptor targets in triple-negative breast cancer. Expression microarray, Western blot, qRT-PCR analyses, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, and statistical analysis were performed in this study. We performed microarray analysis using 227 triple-negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple-negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. TRβ represents a novel nuclear receptor target in triple-negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ's effects on response to chemotherapy.
    Breast Cancer Research and Treatment 03/2015; 150(3). DOI:10.1007/s10549-015-3354-y · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I-III. Site I is crucial for the formation of an active leptin-leptin receptor complex and in its subsequent activation. Amino acids 39-42 (Leu-Asp-Phe-Ile- LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild-type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin-induced anchorage-dependent and -independent growth as well as the migration of ERα-positive (MCF-7) and -negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin-mediated up-regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
    Journal of Cellular and Molecular Medicine 02/2015; 19(5). DOI:10.1111/jcmm.12517 · 3.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most frequent tumor and a major cause of death among women. Estrogens play a crucial role in breast tumor growth, which is the rationale for the use of hormonal antiestrogen therapies. Unfortunately, not all therapeutic modalities are efficacious and it is imperative to develop new effective antitumoral drugs. Oldenlandia diffusa (OD) is a well-known medicinal plant used to prevent and treat many disorders, especially cancers. The aim of this study was to investigate the effects of OD extracts on breast cancer cell proliferation. We observed that OD extracts strongly inhibited anchorage-dependent and -independent cell growth and induced apoptosis in estrogen receptor alpha (ERα)-positive breast cancer cells, whereas proliferation and apoptotic responses of MCF-10A normal breast epithelial cells were unaffected. Mechanistically, OD extracts enhance the tumor suppressor p53 expression as a result of an increased binding of ERα/Sp1 complex to the p53 promoter region. Finally, we isolated ursolic and oleanolic acids as the bioactive compounds able to upregulate p53 expression and inhibit breast cancer cell growth. These acids were greatly effective in reducing tamoxifen-resistant growth of a derivative MCF-7 breast cancer cell line resistant to the antiestrogen treatment. Our results evidence how OD, and its bioactive compounds, exert antiproliferative and apoptotic effects selectively in ERα-positive breast cancer cells, highlighting the potential use of these herbal extracts as breast cancer preventive and/or therapeutic agents.
    Journal of Cellular Physiology 10/2012; 227(10):3363-72. DOI:10.1002/jcp.24035 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity confers risks to cancer development and progression but the mechanisms underlying these risks remain unclear. In this study, we identify a role for the obesity cytokine leptin, which has been implicated previously in breast cancer development, as a determinant for the tumor-promoting activity of cancer-associated fibroblasts (CAF) in both wild-type (WT) and K303R mutant estrogen receptor-α (ERα)-expressing breast cancer cells. Human CAFs stimulated a greater increase in the proliferation and migration of breast cancer cells expressing the K303R-ERα hyperactive receptor than WT-ERα-expressing cells. A concomitant increase was seen in leptin receptor isoform expression and activation of the leptin signaling pathway in cells expressing K303R-ERα compared with WT-ERα, correlating with leptin effects on cell growth, motility, and invasiveness in mutant cells. Epidermal growth factor and other factors secreted by K303R-ERα cells stimulated CAF proliferation, migration, and subsequent leptin secretion. Moreover, K303R-ERα expression generated a leptin hypersensitive phenotype in vivo. Together, our results reveal a bidirectional cross-talk between breast cancer cells and "educated" CAFs that drives tumor progression via leptin signaling. In elucidating a mechanism that connects obesity and cancer, these findings reinforce the concept that blocking cancer-stromal cell communication may represent an effective strategy for targeted therapy of breast cancer.
    Cancer Research 02/2012; 72(6):1416-27. DOI:10.1158/0008-5472.CAN-11-2558 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tamoxifen (Tam) treatment is a first-line endocrine therapy for estrogen receptor-α-positive breast cancer patients. Unfortunately, resistance frequently occurs and is often related with overexpression of the membrane tyrosine kinase receptor HER2. This is the rationale behind combined treatments with endocrine therapy and novel inhibitors that reduce HER2 expression and signaling and thus inhibit Tam-resistant breast cancer cell growth. In this study, we show that activation of farnesoid X receptor (FXR), by the primary bile acid chenodeoxycholic acid (CDCA) or the synthetic agonist GW4064, inhibited growth of Tam-resistant breast cancer cells (termed MCF-7 TR1), which was used as an in vitro model of acquired Tam resistance. Our results demonstrate that CDCA treatment significantly reduced both anchorage-dependent and anchorage-independent epidermal growth factor (EGF)-induced growth in MCF-7 TR1 cells. Furthermore, results from western blot analysis and real-time reverse transcription-PCR revealed that CDCA treatment reduced HER2 expression and inhibited EGF-mediated HER2 and p42/44 mitogen-activated protein kinase (MAPK) phosphorylation in these Tam-resistant breast cancer cells. Transient transfection experiments, using a vector containing the human HER2 promoter region, showed that CDCA treatment downregulated basal HER2 promoter activity. This occurred through an inhibition of nuclear factor-κB transcription factor binding to its specific responsive element located in the HER2 promoter region as revealed by mutagenesis studies, electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Collectively, these data suggest that FXR ligand-dependent activity, blocking HER2/MAPK signaling, may overcome anti-estrogen resistance in human breast cancer cells and could represent a new therapeutic tool to treat breast cancer patients that develop resistance.
    Oncogene 04/2011; 30(39):4129-40. DOI:10.1038/onc.2011.124 · 8.56 Impact Factor