Jae-Ho Shin

Kyung Hee University, Sŏul, Seoul, South Korea

Are you Jae-Ho Shin?

Claim your profile

Publications (12)28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell culture and polymerase chain reaction are currently regarded as the gold standard for adenoviral conjunctivitis diagnosis. They maximize sensitivity and specificity, but require several days to three weeks to get the results. The aim of this study is to determine the potential of Raman spectroscopy as a stand-alone analytical tool for clinical diagnosis of adenoviral conjunctivitis using human tear fluids. A drop-coating deposition surface enhanced Raman scattering (DCD-SERS) method was identified as the most effective method of proteomic analysis in tear biofluids. The proposed DCD-SERS method (using a 2-µL sample) led to Raman spectra with high reproducibility, noise-independence, and uniformity. Additionally, the spectra were independent of the volume of biofluids used and detection zones, including the ring, middle, and central zone, with the exception of the outer layer of the ring zone. Assessments with an intensity ratio of 1242 to 1342 cm-1 achieved 100% sensitivity and 100% specificity in the central zone. Principal component analysis assessments achieved 0.9453 in the area under the receiver operating characteristic curve (AUC) as well as 93.3% sensitivity and 94.5% specificity in the central zone. Multi-Gaussian peak assessments showed that the differences between these two groups resulted from the reduction of the amide III α-helix structures of the proteins. The presence of adenovirus in tear fluids could be detected more accurately in the center of the sample than in the periphery. The DCD-SERS technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of adenoviral conjunctivitis. Therefore, we are hopeful that the DCD-SERS method will be approved for use in ophthalmological clinics in the near future.
    Analytical chemistry. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 57-year-old woman presented with protrusion of the OS 2 months in duration and decreased vision 1 month in duration. The patient was diagnosed with uterine leiomyosarcoma approximately 3 years before presentation. Lung and liver metastases were diagnosed by biopsy 1 year prior to this visit. CT revealed a solid mass with central necrosis in the left lateral orbit that resulted in orbital shifting, bony destruction, and intracranial extension. The diagnosis was left orbital metastatic leiomyosarcoma, and the patient died 2 months after receiving the diagnosis.
    Ophthalmic plastic and reconstructive surgery. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study quantitatively examined short-term effects of 0.02% Mitomycin C (MMC) treatment on the nanostructural changes in human scleral collagen fibrils. Histologic analysis and non-contact mode atomic force microscopy (AFM) were employed to assess the ultrastructural changes in the morphological characteristics of human sclera before and after 0.02% MMC application for 1 and 3 min. The scleral collagen fibrils treated with 0.02% MMC for 1 min showed no significant change in the morphology of collagen fibrils, and a significant change (p < 0.05) in the thickness of scleral tissues and collagen density, compared to the controls. 0.02% MMC application for 3 min led to a significant increase (p < 0.001) in the mean fibril diameter (185.43 +/- 22.64 nm vs. 140.72 +/- 18.06 nm), thickness (0.81 +/- 0.03 mm vs. 0.54 +/- 0.05 mm) and collagen density (1.16 times), compared to the controls This study examined the nanostructural changes in the scleral collagen fibrils before and after MMC application by AFM technique combined with conventional histological analysis (Hematoxylin-eosin and Masson's trichrome). This result indirectly suggests that long-term MMC application might increase the incidence of complications like a scleromalcia.
    Journal of Biomedical Nanotechnology 08/2013; 9(8):1393-7. · 7.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study quantitatively examined the effects of monopolar radiofrequency (RF) treatment on the progressive nanostructural changes in the inflammatory effect of in vivo rabbit dermal collagen fibrils during postoperative 7 days. Conventional histologic analysis and atomic force microscopy (AFM) were employed to assess the nanostructural dermal response in 6 RF groups that underwent 2 passes of RF treatments (10 and 20 W), and 1 untreated control rabbit. After monopolar RF treatment, the rabbit skin clearly showed changes in the collagen network structure. The RF-treated group showed regular parallel arrangement of collagen fibrils whereas normal group showed tangled nanostructures. This phenomenon was remarkable at postoperative 7 days. Therefore, monopolar RF treatment leads to underlying collagen contracture and promotes new collagen formation. A multi-pass treatment of low-energy RF led to the highest contraction of collagen fibrils at the nanostructural level, compared to a single pass of high-energy RF.
    Journal of Biomedical Nanotechnology 08/2013; 9(8):1403-7. · 7.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study quantitatively investigated the immediate effects of a photooxidative collagen cross-linking treatment with photosensitizer riboflavin (RF) and 370 nm UVA light in in vitro human corneoscleral collagen fibrils using histology, thickness, scanning electron microscopy, and atomic force microscopy analyses. Twenty 8 × 2 mm corneoscleral strips were dissected sagittally from donor tissue using a scalpel. Four parameters were investigated, including the density, thickness, adhesion force, and stiffness of corneoscleral tissues before and after the collagen cross-linking treatment. The RFUVA-catalyzed collagen cross-linking treatment led to an increase in the density of both corneal (8%) and scleral (23%) stromal collagens. However, there was no difference in corneoscleral thickness. Furthermore, RFUVA-catalyzed collagen cross-linking treatment led to an increased biomechanical response of corneosclera: 25 and 8% increases in corneoscleral stiffness, and 24 and 22% increases in corneoscleral adhesion force. The collagen cross-linking treatment through RF-sensitized photoreaction may cause structural and biomechanical changes in the collagen fibril network of the cornea and the sclera. This is due to narrowing of the interfibrillar spacing and the stromal edema.
    Microscopy and Microanalysis 06/2013; · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the inflammatory effect of intraoperative mitomycin C (MMC) on adhesion reformation in human rectus muscles. Ten consecutive patients who underwent medial rectus resection had their postoperative rectus muscles divided into two groups: control group (n = 10) and MMC group (n = 10). In the MMC group, the muscle was soaked for 2 min with MMC, prepared as a 0.2 mg/mL (0.02%) solution. The 0.02% MMC reactions were examined using histological analysis with hematoxylin-eosin (inflammatory response) and Masson's trichrome (collagen fibrils), immunoreactivities of cyclooxygenase-II (inflammatory response), and collagen type I and III, scanning electron microscopy analysis to quantify the diameter and D-periodicity of collagen fibrils, and atomic force microscopy analysis to quantify the diameter, D-periodicity, and adhesion force of collagen fibrils. The rectus muscles treated with 0.02% MMC showed a significantly increased inflammatory response (p < 0.05), increased collagen density (p < 0.0001), increased fibril diameter (p < 0.001 or p < 0.05), and decreased fibril adhesion force (p < 0.005) compared to the rectus muscles in the control group. MMC simultaneously caused an inflammatory response as well as nanostructural and biomechanical property changes in the collagen fibril network.
    Microscopy and Microanalysis 02/2013; 19(1):227-32. · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study quantitatively examined the short and mid-long term effects of radiofrequency (RF) treatment on the normal dermal collagen fibrils of live rabbits. Effects were evaluated by histology and scanning probe microscopy analysis of dermal tissues treated using three RF energy levels (10, 20, and 30 W) and either a single- or multiple-pass procedure. Progressive changes in the morphology of rabbit dermal collagen fibrils were investigated over a 30-day post-treatment period. All RF-treated groups, except for the low-energy group (10 W), displayed more prominent inflammatory responses compared to the control. This inflammatory response was more prominent a day after treatment. Dermal tissues 30-days after RF treatment exhibited prominent myofibroblast activity associated with collagen contractile activity during wound healing in addition to chronic inflammation. A decrease in the morphology of dermal collagen fibrils after RF treatment continued until seven days postoperatively. The collagen fibril diameter increased to near baseline at 30 days postoperatively. Low-energy and multi-pass treatments resulted in greater collagen fibril contraction and recovery at the nanostructural level at 30 days postoperatively than did a single high-energy treatment. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.
    Microscopy Research and Technique 08/2012; · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to quantitatively investigate the morphologies (surface roughness) and biomechanical properties (Young's modulus) of human anterior lens capsules (ALCs) for noncataract and cataract groups using atomic force microscopy. Eight human ALCs obtained during phacoemulsification from patients with senile cataracts (72 ± 13 years) were investigated in both the hydrated and dehydrated conditions. The cataract group showed clearly the proliferated lens epithelial cells (LECs) with a monomorphic cell structure, a diameter of 12.54 ± 4.31 μm, and a height of 0.23 ± 0.04 μm, whereas the control group showed no LECs. A substantial amount of false-positive calcification was observed caused by the deposition of remnants of dried salt solution. Cataract group showed significantly higher surface roughness (382.06 nm, p ≤ 0.001) than control group in the anterior side of ALCs, whereas cataract group showed significantly lower surface roughness (353.79 nm, p ≤ 0.001) than control group in their posterior side. Cataract group showed significantly higher Young's modulus (69.52 kPa, p ≤ 0.001) compared to the control group, regardless of the ALC side. Therefore, it is significant that this study provides a new method to examine the nanostructural characteristic and biomechanical property of human ALCs through a nanometer-scale resolution microscopy technique.
    Scanning 02/2012; 34(4):247-56. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to quantitatively investigate the short-term effects of RF tissue-tightening treatment in in vivo rabbit dermal collagen fibrils. These effects were measured at different energy levels and at varying pass procedures on the nanostructural response level using histology and AFM analysis. Each rabbit was divided into one of seven experimental groups, which included the following: control group, and six RF group according to RF energy (20 W and 40 W) and three RF pass procedures. The progressive changes in the diameter and D-periodicity of rabbit dermal collagen fibrils were investigated in detail over a 7-day post-treatment period. The dermal tissues treated with the RF tissue-tightening device showed more prominent inflammatory responses with inflammatory cell ingrowth compared to the control. This effect showed more prominent with the passage of day after treatment. Although an increase in the diameter and D-periodicity of dermal collagen fibrils was identified immediately after the RF treatment, a decrease in the morphology of dermal collagen fibrils continued until post-operative day 7. Furthermore, RF treatment led to the loss of distinct borders. Increases in RF energy with the same pass procedure, as well as an increase in the number of RF passes, increased the occurrence of irreversible collagen fibril injury. A multiple-pass treatment at low energy rather than a single-pass treatment at high energy showed a large amount of collagen fibrils contraction at the nanostructural level.
    Lasers in Medical Science 10/2011; 27(5):923-33. · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the surface nanostructures of three orbital implants: nonporous poly(methyl methacrylate) (PMMA), porous aluminum oxide and porous polyethylene. The morphological characteristics of the orbital implants surfaces were observed by atomic force microscopy (AFM). The AFM topography, phase shift and deflection images of the intact implant samples were obtained. The surface of the nonporous PMMA implant showed severe scratches and debris. The surface of the aluminum oxide implant showed a porous structure with varying densities and sizes. The PMMA implant showed nodule nanostructures, 215.56 ± 52.34 nm in size, and the aluminum oxide implant showed crystal structures, 730.22 ± 341.02 nm in size. The nonporous PMMA implant showed the lowest roughness compared with other implant biomaterials, followed by the porous aluminum oxide implant. The porous polyethylene implant showed the highest roughness and severe surface irregularities. Overall, the surface roughness of orbital implants might be associated with the rate of complications and cell adhesion.
    Scanning 05/2011; 33(4):211-21. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the nanostructural surface of three frontalis sling biomaterials: autogenous fascia lata, preserved fascia lata and silicone rod. The morphological characteristics of the sling biomaterial surfaces were examined qualitatively and quantitatively by scanning electron microscopy and atomic force microscopy, respectively. The autogenous fascia lata showed well-arranged nanostructures of parallel fascia collagen fibrils with clear 67 nm axial periodicity, whereas the preserved fascia lata showed tangled nanostructures of damaged collagen fibril bundles. The silicone rod showed a substantial amount of debris with some scratches and the smoothest roughness compared with the other sling biomaterials, followed by preserved fascia lata. Autogenous fascia lata showed the highest surface roughness. The association between the roughness and cell adhesion suggests that the nanostructure of autogenous fascia lata biomaterials is the best for frontalis sling and that of the silicone rod biomaterials is the worst.
    Scanning 05/2011; 33(6):419-25. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the effect of intraoperative mitomycin C (MMC) on adhesion reformation in human rectus muscles. Eight consecutive patients who underwent medial rectus recession had their post-operative rectus muscles divided into two groups: untreated (control) and treated with 0.02% MMC for 2 min, and were compared using three examination methods: histological analysis with hematoxylin-eosin staining to assess the inflammatory response and Masson's trichrome to semiquantify collagen fibrils, scanning electron microscopy analysis to quantify the diameter and D-periodicity of collagen fibrils, and atomic force microscopy analysis to quantify the diameter, D-periodicity and adhesion force of collagen fibrils. The rectus muscles treated with 0.02% MMC showed significantly increased inflammatory response (p < 0.0001), increased fibril diameter (p < 0.001 or p < 0.05) and decreased fibril adhesion force (p < 0.005) compared to controls. MMC may simultaneously cause an inflammatory response as well as nanostructural and mechanical property changes in the collagen fibril network.
    01/2011;