Daniel S Lark

East Carolina University, North Carolina, United States

Are you Daniel S Lark?

Claim your profile

Publications (6)27.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies in experimental models suggest n-3 polyunsaturated fatty acids (PUFAs) improve metabolic and anti-inflammatory/antioxidant capacity heart, although the mechanisms are unclear and translational evidence is lacking. In this study, patients ingested a moderately high dose of n-3 PUFAs (3.4 g/day eicosapentaneoic (EPA) and docosahexaneoic acid (DHA) ethyl-esters) for a period of 2-3 weeks prior to having elective cardiac surgery. Blood was obtained before treatment and at time of surgery, and myocardial tissue from right atrium was also dissected during surgery. Blood and myocardial tissue EPA and DHA levels were significantly higher in n-3 PUFA treated patients compared to untreated, standard-of-care control patients. Interestingly, n-3 PUFA patients had greater nuclear transactivation of peroxisome proliferator-activated receptor-γ (PPARγ), fatty acid metabolic gene expression, and enhanced mitochondrial respiration supported by palmitoyl-carnitine in atrial myocardium, despite no difference in mitochondrial content. Myocardial tissue from n-3 PUFA patients also displayed greater expression and activity of key antioxidant/anti-inflammatory enzymes. These findings lead to our hypothesis that PPARγ activation is a mechanism by which fish oil n-3 PUFAs enhance mitochondrial fatty acid oxidation and antioxidant capacity in human atrial myocardium, and that this pre-operative therapeutic regimen may be optimal for mitigating oxidative/inflammatory stress associated with cardiac surgery.
    Antioxidants & Redox Signaling 03/2014; · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thioredoxin-interacting protein (TXNIP) is an a-arrestin family member involved in redox sensing and metabolic control. Growing evidence links TXNIP to mitochondrial function, but the molecular nature of this relationship has remained poorly defined. Herein, we employed targeted metabolomics and comprehensive bioenergetic analyses to evaluate oxidative metabolism and respiratory kinetics in mouse models of total body (TKO) and skeletal muscle-specific (TXNIPSKM-/-) Txnip deficiency. Compared to littermate controls, both TKO and TXNIPSKM-/- mice had reduced exercise tolerance in association with muscle-specific impairments in substrate oxidation. Oxidative insufficiencies in TXNIP null muscles were not due to perturbations in mitochondrial mass, the electron transport chain or emission of reactive oxygen species. Instead, metabolic profiling analyses led to the discovery that TXNIP deficiency causes marked deficits in enzymes required for catabolism of branched chain amino acids, ketones and lactate, along with more modest reductions in enzymes of β-oxidation and the tricarboxylic acid cycle. The decrements in enzyme activity were accompanied by comparable deficits in protein abundance without changes in mRNA expression, implying dysregulation of protein synthesis or stability. Considering that TXNIP expression increases in response to starvation, diabetes and exercise, these findings point to a novel role for TXNIP in coordinating mitochondrial fuel switching in response to nutrient availability.
    Journal of Biological Chemistry 01/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Once regarded as "byproducts" of aerobic metabolism, the production of superoxide/H2O2 is now understood to be a highly specialized and extensively regulated process responsible for exerting control over a vast number of thiol-containing proteins, collectively referred to as the redox-sensitive proteome. Although disruptions within this process, secondary to elevated peroxide exposure, have been linked to disease, delineation of the sources and mechanisms regulating increased peroxide burden remain poorly defined and as such difficult to target using pharmacotherapy. Here we identify the pyruvate dehydrogenase complex (PDC) as a key source of H2O2 within skeletal muscle mitochondria under conditions of depressed glutathione redox buffering integrity. Treatment of permeabilized myofibers with varying concentrations of the glutathione depleting agent 1-chloro-2,4-dinitrobenzene (CDNB) led to a dose-dependent increase in pyruvate-supported JH2O2 emission, with emission rates eventually rising to exceed those of all substrate combinations tested. This striking sensitivity to glutathione depletion was observed in permeabilized fibers prepared from multiple species and was specific to PDC. Physiological oxidation of the cellular glutathione pool following high fat feeding in rodents was found to elevate PDC JH2O2 emission, as well as increase the sensitivity of the complex to GSH depletion. These findings reveal PDC as a potential major site of H2O2 production that is extremely sensitive to mitochondrial glutathione redox status.
    Free Radical Biology & Medicine 09/2013; · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle from sedentary obese patients is characterized by depressed electron transport activity, reduced expression of genes required for oxidative metabolism, altered mitochondrial morphology and lower overall mitochondrial content. These findings imply that obesity, or more likely the metabolic imbalance that causes obesity, leads to a progressive decline in mitochondrial function, eventually culminating in mitochondrial dissolution or mitoptosis. A decrease in the sensitivity of skeletal muscle to insulin represents one of the earliest maladies associated with high dietary fat intake and weight gain. Considerable evidence has accumulated to suggest that the cytosolic ectopic accumulation of fatty acid metabolites, including diacylglycerol and ceramides, underlies the development of insulin resistance in skeletal muscle. However, an alternative mechanism has recently been evolving, which places the etiology of insulin resistance in the context of cellular/mitochondrial bioenergetics and redox systems biology. Overnutrition, particularly from high-fat diets, generates fuel overload within the mitochondria, resulting in the accumulation of partially oxidized acylcarnitines, increased mitochondrial hydrogen peroxide (H2O2) emission and a shift to a more oxidized intracellular redox environment. Blocking H2O2 emission prevents the shift in redox environment and preserves insulin sensitivity, providing evidence that the mitochondrial respiratory system is able to sense and respond to cellular metabolic imbalance. Mitochondrial H2O2 emission is a major regulator of protein redox state, as well as the overall cellular redox environment, raising the intriguing possibility that elevated H2O2 emission from nutrient overload may represent the underlying basis for the development of insulin resistance due to disruption of normal redox control mechanisms regulating protein function, including the insulin signaling and glucose transport processes.
    International Journal of Obesity Supplements. 12/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Energy transfer between mitochondrial and cytosolic compartments is predominantly achieved by creatine-dependent phosphate shuttling (PCr/Cr) involving miCK. However ADP/ATP diffusion through adenine nucleotide translocase (ANT) and voltage-dependent anion carriers (VDAC) are also involved in this process. To determine if exercise alters the regulation of this system, ADP-stimulated mitochondrial respiratory kinetics were assessed in permeabilized muscle fibre bundles (PmFB) taken from biopsies before and after 2hr of cycling exercise (60% VO(2)peak) in 9 lean males. Concentrations of creatine (Cr) and phosphocreatine (PCr) as well as the contractile state of PmFB were manipulated in situ. In the absence of contractile signals (relaxed PmFB) and miCK activity (no Cr), post-exercise respiratory sensitivity to ADP was reduced in situ (up to 126% higher apparent K(m) to ADP) suggesting inhibition of ADP/ATP diffusion between matrix and cytosolic compartments (possibly ANT and VDAC). However this effect was masked in the presence of saturating Cr (no effect of exercise on ADP sensitivity). Given the role of ANT is thought to be independent of Cr, these findings suggest ADP/ATP, but not PCr/Cr, cycling through the outer mitochondrial membrane (VDAC) may be attenuated in resting muscle after exercise. In contrast, in contracted PmFB, post-exercise respiratory sensitivity to ADP increased with miCK activation (saturating Cr; 33% lower apparent (Km) to ADP), suggesting prior exercise increases miCK sensitivity in situ. These observations demonstrate that exercise increases miCK-dependent respiratory sensitivity to ADP, promoting mitochondrial-cytosolic energy exchange via PCr/Cr cycling, possibly through VDAC. This effect may mask an underlying inhibition of Cr-independent ADP/ATP diffusion. This enhanced regulation of miCK-dependent phosphate shuttling may improve energy homeostasis through more efficient coupling of oxidative phosphorylation to perturbations in cellular energy charge during subsequent bouts of contraction.
    The Journal of Physiology 08/2012; · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assessment of mitochondrial ADP-stimulated respiratory kinetics in PmFBs (permeabilized fibre bundles) is increasingly used in clinical diagnostic and basic research settings. However, estimates of the Km for ADP vary considerably (~20-300 μM) and tend to overestimate respiration at rest. Noting that PmFBs spontaneously contract during respiration experiments, we systematically determined the impact of contraction, temperature and oxygenation on ADP-stimulated respiratory kinetics. BLEB (blebbistatin), a myosin II ATPase inhibitor, blocked contraction under all conditions and yielded high Km values for ADP of >~250 and ~80 μM in red and white rat PmFBs respectively. In the absence of BLEB, PmFBs contracted and the Km for ADP decreased ~2-10-fold in a temperature-dependent manner. PmFBs were sensitive to hyperoxia (increased Km) in the absence of BLEB (contracted) at 30 °C but not 37 °C. In PmFBs from humans, contraction elicited high sensitivity to ADP (Km<100 μM), whereas blocking contraction (+BLEB) and including a phosphocreatine/creatine ratio of 2:1 to mimic the resting energetic state yielded a Km for ADP of ~1560 μM, consistent with estimates of in vivo resting respiratory rates of <1% maximum. These results demonstrate that the sensitivity of muscle to ADP varies over a wide range in relation to contractile state and cellular energy charge, providing evidence that enzymatic coupling of energy transfer within skeletal muscle becomes more efficient in the working state.
    Biochemical Journal 05/2011; 437(2):215-22. · 4.65 Impact Factor