Danijela Rihtaric

University of Ljubljana, Ljubljana, Ljubljana, Slovenia

Are you Danijela Rihtaric?

Claim your profile

Publications (5)10.3 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Oral vaccination campaigns to eliminate fox rabies were initiated in Slovenia in 1995. In May 2012, a young fox (Vulpes vulpes) with typical rabies signs was captured. Its brain and salivary gland tissues were found to contain vaccine strain SAD B19. The Basic Logical Alignment Search Tool alignment of 589 nucleotides determined from the N gene of the virus isolated from the brain and salivary glands of the affected was 100% identical to the GenBank reference SAD B19 strain. Sequence analysis of the N and M genes (4,351 nucleotides) showed two nucleotide modifications at position 1335 (N gene) and 3114 (M gene) in the KC522613 isolate identified in the fox compared to SAD B19.
    Journal of wildlife diseases 01/2014; · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A total 91 serum samples and 51 pig tissue samples were collected between October 2009 and June 2010 from 30 herds, where a clinical picture of infection or/and porcine reproductive and respiratory syndrome (PRRS) antibody-positive pigs were detected. Of the 142 samples tested, 65 (45.8%) were identified as porcine reproductive and respiratory syndrome virus (PRRSV) positive by a one-step reverse transcription and polymerase chain reaction (RT-PCR). The sequencing results of 258 nucleotides in ORF7 from 30 herds with PRRSV-positive samples revealed the circulation of six genetically different strains of PRRSV, all belonging to the Subtype 1 (Type I). Twenty-three (76.6%) of the thirty positive herds were infected with a genetically identical cluster, with 98.9-100% nucleotide identity between the herds, representing the detection of a new strain of PRRSV in Europe, not published previously. From these 23 herds, positive PRRSV samples were detected with gel-based RT-PCR, but all gave false-negative results with two commercial real-time kits. When using a third commercial real-time kit, 28 (93.3%) of 30 positive samples in gel-based RT-PCR were detected as the Type I, confirming that the sensitivity of this real-time kit is much greater than the sensitivity of the previous two. The influence of new genetic variants of PRRSV circulating in Slovenia on molecular diagnosis and the control of the infection is discussed.
    Journal of virological methods 01/2012; 179(1):51-6. · 2.13 Impact Factor
  • Source
    D Rihtarič, P Hostnik, J Grom, I Toplak
    [Show abstract] [Hide abstract]
    ABSTRACT: A molecular epidemiology study was performed on a selection of 30 rabies-positive brain samples collected between 1994 and 2010 in Slovenia and originating from the red fox (n=19), badger (n=3), cattle (n=3), dog (n=2), cat (n=1), marten (n=1) and horse (n=1). Based on the comparison of 1092 and 672 nucleotide sequences of nucleoprotein (N) and partial glycoprotein (G) gene regions, a low genetic diversity of the circulating strains was detected, but both phylogenetic trees were consistent with the topology where partial nucleoprotein or glycoprotein genes were used. A high sequence identity in the N and G gene to rabies virus isolates from neighbouring countries was found. The Slovenian strains were clearly different from the vaccine strains SAD B19 and SAD Bern, which have been used in Slovenia since 1988.
    Veterinary Microbiology 04/2011; 152(1-2):181-6. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In November and December 2007, the virus causing viral haemorrhagic septicaemia (VHS) was detected in rainbow trout Oncorhynchus mykiss from 2 fish farms in Slovenia. During 2008 and 2009 the infection spread only among rainbow trout farms and 4 new outbreaks were confirmed. High mortality and clinical signs of VHS were observed among the diseased fish. VHSV was confirmed by virus isolation, immunoperoxidase test, reverse transcriptase polymerase chain reaction (RT-PCR) and phylogenetic analysis. Based on 1 complete (1524 nucleotides [nt]) and 9 partial (600 nt) glycoprotein gene nucleotide sequences, 9 VHSV isolates from the 6 VHS outbreaks were genetically closely related (99 to 100% identity), and were classified into the Subgroup I-a of Genotype I, most closely related to the German isolates Dstg21-07, Dstg36-06, and Dstg54-1-07 (99 to 100% identity). Phylogenetic analysis and epidemiological investigations confirmed that the VHS virus had been (re)introduced with imported live fish, and that subsequent outbreaks were linked to the initial infection. Our study shows that direct nucleotide sequencing of RT-PCR products, amplified from the tissue of VHSV-infected fish, represents a reliable tool for fast routine genotyping in diagnostic laboratories. This is the first report of a natural epidemic associated with VHSV infection in Slovenia since the eradication of the disease in 1977.
    Diseases of Aquatic Organisms 10/2010; 92(1):21-9. · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, such as Hendra virus, Nipah virus, Ebola virus, Marburg virus, rabies and other lyssaviruses. Recently, a large number of viruses closely related to members of the genus Coronavirus have been associated with severe acute respiratory syndrome (SARS) and detected in bat species. In this study, samples were collected from 106 live bats of seven different bat species from 27 different locations in Slovenia. Coronaviruses were detected by RT-PCR in 14 out of 36 horseshoe bat (Rhinolophus hipposideros) fecal samples, with 38.8% virus prevalence. Sequence analysis of a 405-nucleotide region of the highly conserved RNA polymerase gene (pol) showed that all coronaviruses detected in this study are genetically closely related, with 99.5-100% nucleotide identity, and belong to group 2 of the coronaviruses. The most closely related virus sequence in GenBank was SARS bat isolate Rp3/2004 (DQ071615) within the SARS-like CoV cluster, sharing 85% nucleotide identity and 95.6% amino acid identity. The potential risk of a new group of bat coronaviruses as a reservoir for human infections is highly suspected, and further molecular epidemiologic studies of these bat coronaviruses are needed.
    Archives of Virology 03/2010; 155(4):507-14. · 2.03 Impact Factor