Brandi L Blaylock

Wake Forest School of Medicine, Winston-Salem, NC, United States

Are you Brandi L Blaylock?

Claim your profile

Publications (5)34.65 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dopamine D3 receptor (D3R) has been investigated as a potential target for medication development to treat substance use disorders (SUDs) with a particular focus on cocaine and methamphetamine. Currently, there are no approved medications to treat cocaine and methamphetamine addiction and thus developing pharmacotherapeutics to complement existing behavioral strategies is a fundamental goal. Novel compounds with high affinity and D3R selectivity have been evaluated in numerous animal models of drug abuse and favorable outcomes in nonhuman primate models of self-administration and relapse have provided compelling evidence to advance these agents into the clinic. One approach is to repurpose drugs that share the D3R mechanism and already have clinical utility, and to this end buspirone has been identified as a viable candidate for clinical trials. A second, but substantially more resource intensive and risky approach involves the development of compounds that exclusively target D3R, such as GSK598809 and PG 619. Clinical investigation of these drugs or other novel D3R-selective agents will provide a better understanding of the role D3R plays in addiction and whether or not antagonists or partial agonists that are D3R selective are effective in achieving abstinence in this patient population.
    Biochemical pharmacology 07/2012; 84(7):882-90. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain imaging and behavioral studies suggest an inverse relationship between dopamine (DA) D2/D3 receptors and vulnerability to cocaine abuse, although most research has used males. For example, male monkeys that become dominant in a social group have significant elevations in D2/D3 receptor availability and are less vulnerable to cocaine reinforcement. DA D2/D3 receptor availability was assessed in female cynomolgus monkeys (n = 16) with positron emission tomography (PET) while they were individually housed, 3 months after stable social hierarchies had formed, and again when individually housed. In addition, PET was used to examine changes in dopamine transporter (DAT) availability after social hierarchy formation. After imaging studies were complete, monkeys received implantation with indwelling intravenous catheters and self-administered cocaine (.001-.1 mg/kg/injection) under a fixed-ratio 30 schedule of reinforcement. Acquisition of cocaine reinforcement occurred when response rates were significantly higher than when saline was self-administered. Neither DAT nor D2/D3 receptor availability in the caudate nucleus and putamen was predictive of social rank, but both significantly changed after formation of social hierarchies. DA D2/D3 receptor availability significantly increased in females that became dominant, whereas DAT availability decreased in subordinate females. Dominant female monkeys acquired cocaine reinforcement at significantly lower doses than subordinate monkeys. The relationship between D2/D3 receptor availability and vulnerability to cocaine reinforcement seems, on the basis of these findings, opposite in females and males. These data indicate that the social environment profoundly affects the DA system but does so in ways that have different functional consequences for females than for males.
    Biological psychiatry 04/2012; 72(5):414-21. · 8.93 Impact Factor
  • Source
    Brandi L Blaylock, Michael A Nader
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 01/2012; 37(1):297-8. · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although dopamine D(3) receptors have been associated with cocaine abuse, little is known about the consequences of chronic cocaine on functional activity of D(3) receptor-preferring compounds. This study examined the behavioral effects of D(3) receptor-selective 4-phenylpiperazines with differing in vitro functional profiles in adult male rhesus monkeys with a history of cocaine self-administration and controls. In vitro assays found that PG 619 (N-(3-hydroxy-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) was a potent D(3) antagonist in the mitogenesis assay, but a fully efficacious agonist in the adenylyl cyclase assay, NGB 2904 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide HCl) was a selective D(3) antagonist, whereas CJB 090 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) exhibited a partial agonist profile in both in vitro assays. In behavioral studies, the D(3) preferential agonist quinpirole (0.03-1.0 mg/kg, i.v.) dose-dependently elicited yawns in both groups of monkeys. PG 619 and CJB 090 elicited yawns only in monkeys with an extensive history of cocaine, whereas NGB 2904 did not elicit yawns, but did antagonize quinpirole and PG 619-elicited yawning in cocaine-history monkeys. In another experiment, doses of PG 619 that elicited yawns did not alter response rates in monkeys self-administering cocaine (0.03-0.3 mg/kg per injection). Following saline extinction, cocaine (0.1 mg/kg) and quinpirole (0.1 mg/kg), but not PG 619 (0.1 mg/kg), reinstated cocaine-seeking behavior. When given before a cocaine prime, PG 619 decreased cocaine-elicited reinstatement. These findings suggest that (1) an incongruence between in vitro and in vivo assays, and (2) a history of cocaine self-administration can affect in vivo efficacy of D(3) receptor-preferring compounds PG 619 and CJB 090, which appear to be dependent on the behavioral assay.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 02/2011; 36(5):1104-13. · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine self-administration alters brain dopaminergic and serotonergic function primarily in mesolimbic and prefrontal brain regions whereas 3,4-methylenedioxymethamphetamine (MDMA) self-administration predominately alters brain serotonergic function in a more widespread distribution across cortical regions. We previously reported that, compared to drug-naïve rhesus monkeys, self-administration of cocaine but not MDMA was associated with increased serotonin transporter (SERT) availability in two mesolimbic regions, the caudate nucleus and putamen, as measured by positron emission tomography (PET) using the SERT-specific ligand [(11)C]-3-amino-4(2-dimethylamino-methyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB). The goal of the present study was to extend this comparison between cocaine and MDMA self-administration to SERT availability in cortical regions, which have been shown previously to be affected in human drug abusers and are associated with executive function. PET studies using [(11)C]DASB were conducted in adult male rhesus monkeys with a history of cocaine (mean intake = 742.6 mg/kg) or MDMA (mean intake = 121.0 mg/kg) self-administration, and drug-naïve controls (n = 4/group). Regions of interest were drawn for several cortical (prefrontal, temporal, parietal, occipital and midcingulate) and subcortical (thalamus, amygdala and hippocampus) areas. Cortical SERT availability was significantly higher in monkeys with a cocaine self-administration history compared to controls whereas MDMA self-administration resulted in lower levels of SERT availability. These data extend our previous findings indicating that cocaine and MDMA self-administration differentially alter SERT availability in subcortical and cortical regions, which may have implications for development of treatment drugs.
    Neuropharmacology 01/2011; 61(1-2):245-51. · 4.11 Impact Factor