Alexander Koenig

Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcino, Catalonia, Spain

Are you Alexander Koenig?

Claim your profile

Publications (33)123.32 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Cancer-associated inflammation is a molecular key feature in pancreatic ductal adenocarcinoma. Oncogenic KRAS in conjunction with persistent inflammation is known to accelerate carcinogenesis, although the underlying mechanisms remain poorly understood. Here we outline a novel pathway whereby the transcription factors NFATc1 and STAT3 cooperate in pancreatic epithelial cells to promote KrasG12D-driven carcinogenesis. NFATc1 activation is induced by inflammation and itself accelerates inflammation-induced carcinogenesis in KrasG12D mice, whereas genetic or pharmacological ablation of NFATc1 attenuates this effect. Mechanistically, NFATc1 complexes with STAT3 for enhancer-promoter communications at jointly regulated genes involved in oncogenesis, e.g. Cyclin, EGFR and WNT family members. The NFATc1-STAT3 cooperativity is operative in pancreatitis-mediated carcinogenesis as well as in established human pancreatic cancer. Together, these studies unravel new mechanisms of inflammatory driven pancreatic carcinogenesis and suggest beneficial effects of chemopreventive strategies using drugs which are currently available for targeting these factors in clinical trials.
    Cancer Discovery 04/2014; · 10.14 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A 59-year-old patient was admitted to hospital with recurrent flush symptoms and pathologically elevated 5-hydroxyindoleacetic acid (5-HIAA) levels in urine. A known cystic lesion of the liver which had been followed for years by ultrasound examinations and was regarded as a bland hepatic cyst was identified as a metastasis of a neuroendocrine neoplasm of the ileum. In two sequential surgical interventions the primary tumor with mesenteric lymph node metastases as well as the cystic liver metastasis could be resected. After surgical treatment an R1 situation at the mesenteric site and suspicious para-aortic lymph nodes remained. The long established treatment of factor-V Leiden mutation by anticoagulation with phenprocoumon was supplemented by deep subcutaneous injection of lanreotide autogel every 4 weeks. Currently, there is no evidence for progressive disease and the patient is without clinical signs of a carcinoid syndrome.
    Der Internist 01/2014; · 0.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.
    Cell Death & Disease 01/2014; 5:e1142. · 6.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the cytoplasmic machinery that orchestrates autophagy induction during starvation, hypoxia, or receptor stimulation has been widely studied, the key epigenetic events that initiate and maintain the autophagy process remain unknown. Here we show that the methyltransferase G9a coordinates the transcriptional activation of key regulators of autophagosome formation by remodeling the chromatin landscape. Pharmacological inhibition or RNAi-mediated suppression of G9a induces LC3B expression and lipidation that is dependent on RNA synthesis, protein translation and the methyltrasferase activity of G9a. Under normal conditions, G9a associates with the LC3B, WIPI1 and DOR gene promoters, epigenetically repressing them. However, G9a and G9a-repressive histone marks are removed during starvation and receptor-stimulated activation of naïve T cells, two physiological inducers of macroautophagy. Moreover, we show that the JNK pathway is involved in the regulation of autophagy gene expression during naïve T cell activation. Together these findings reveal that G9a directly represses genes known to participate in the autophagic process, and that inhibition of G9a-mediated epigenetic repression represents an important regulatory mechanism during autophagy.
    Molecular and cellular biology 08/2013; · 6.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance, in which it impairs cell growth and tumorigenicity. However, the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report, we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However, ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21(Cip1) and p27(Kip1) induction, whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1, ESA and CD44. Importantly, we show that SOX2 is enriched in the ESA(+)/CD44(+) CSC population from two different patient samples. Moreover, we show that SOX2 directly binds to the Snail, Slug and Twist promoters, leading to a loss of E-Cadherin and ZO-1 expression. Taken together, our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype, suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.
    Oncogenesis. 01/2013; 2:e61.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Arp2/3-activator Wiskott-Aldrich syndrome protein and Scar homologue (WASH) is suggested to regulate actin-dependent membrane scission during endosomal sorting, but its cellular roles have not been fully elucidated. To investigate WASH function, we generated tamoxifen-inducible WASH-knockout mouse embryonic fibroblasts (WASHout MEFs). Of interest, although EEA1(+) endosomes were enlarged, collapsed, and devoid of filamentous-actin and Arp2/3 in WASHout MEFs, we did not observe elongated membrane tubules emanating from these disorganized endomembranes. However, collapsed WASHout endosomes harbored segregated subdomains, containing either retromer cargo recognition complex-associated proteins or EEA1. In addition, we observed global collapse of LAMP1(+) lysosomes, with some lysosomal membrane domains associated with endosomes. Both epidermal growth factor receptor (EGFR) and transferrin receptor (TfnR) exhibited changes in steady-state cellular localization. EGFR was directed to the lysosomal compartment and exhibited reduced basal levels in WASHout MEFs. However, although TfnR was accumulated with collapsed endosomes, it recycled normally. Moreover, EGF stimulation led to efficient EGFR degradation within enlarged lysosomal structures. These results are consistent with the idea that discrete receptors differentially traffic via WASH-dependent and WASH-independent mechanisms and demonstrate that WASH-mediated F-actin is requisite for the integrity of both endosomal and lysosomal networks in mammalian cells.
    Molecular biology of the cell 06/2012; 23(16):3215-28. · 5.98 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Ras GTPase-activating-like protein IQGAP1 is a multimodular scaffold that controls signaling and cytoskeletal regulation in fibroblasts and epithelial cells. However, the functional role of IQGAP1 in T cell development, activation, and cytoskeletal regulation has not been investigated. In this study, we show that IQGAP1 is dispensable for thymocyte development as well as microtubule organizing center polarization and cytolytic function in CD8(+) T cells. However, IQGAP1-deficient CD8(+) T cells as well as Jurkat T cells suppressed for IQGAP1 were hyperresponsive, displaying increased IL-2 and IFN-γ production, heightened LCK activation, and augmented global phosphorylation kinetics after TCR ligation. In addition, IQGAP1-deficient T cells exhibited increased TCR-mediated F-actin assembly and amplified F-actin velocities during spreading. Moreover, we found that discrete regions of IQGAP1 regulated cellular activation and F-actin accumulation. Taken together, our data suggest that IQGAP1 acts as a dual negative regulator in T cells, limiting both TCR-mediated activation kinetics and F-actin dynamics via distinct mechanisms.
    The Journal of Immunology 05/2012; 188(12):6135-44. · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The transcription factors Snail, Slug and Twist repress E-cadherin and induce epithelial-mesenchymal transition (EMT), a process exploited by invasive cancer cells. In this study, we evaluated the role of EMT in the tumorgenesis of neuroendocrine tumors of the pancreas (PNETs) in vitro, in vivo and human tumor specimen. Expression of EMT markers was analyzed using immunohistochemistry and real-time PCR. For in vitro studies, BON-1 cells were analyzed regarding expression of EMT markers before and after transfection with siRNA against Slug or Snail, and cell aggregation assays were performed. To asses in vivo effects, Rip1Tag2 mice were treated with vehicle or the snail-inhibitor polythlylenglykol from week 5-10 of age. The resected pancreata were evaluated by weight, tumor cell proliferation and apoptosis. Snail and Twist was expressed in 61 % and 64% of PNETs. This was associated with loss of E-cadherin. RT-PCR revealed conservation of the EMT markers Slug and Snail in BON-1 cells. Transfection with siRNA against Slug was associated with upregulation of E-cadherin, enhanced cell-cell adhesion and inhibition of cell proliferation. Snail-inhibition in vivo by PEG was associated with increased apoptosis, decreased tumor cell proliferation and dramatic reduced tumor volume in Rip1Tag2 mice. The presented data show that EMT plays a key role in tumorgenesis of PNETs. The activation of Snail in a considerable subset of human PNETs and the successful effect of Snail inhibition by PEG in islet cell tumors of transgenic mice provides first evidence of Snail as a drug target in PNETs.
    Cancers. 01/2012; 4(1):281-94.
  • [show abstract] [hide abstract]
    ABSTRACT: Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.
    Journal of Biological Chemistry 08/2011; 286(41):35823-33. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The aminobisphosphonate zoledronic acid has elicited significant attention due to its remarkable anti-tumoral activity, although its detailed mechanism of action remains unclear. Here, we demonstrate the existence of a nuclear GSK-3β-NFATc2 stabilization pathway that promotes breast and pancreatic cancer growth in vitro and in vivo and serves as a bona fide target of zoledronic acid. Specifically, the serine/threonine kinase GSK-3β stabilizes nuclear NFATc2 through phosphorylation of the serine-rich SP2 domain, thus protecting the transcription factor from E3-ubiquitin ligase HDM2-mediated proteolysis. Zoledronic acid disrupts this NFATc2 stabilization pathway through two mechanisms, namely GSK-3β inhibition and induction of HDM2 activity. Upon nuclear accumulation, HDM2 targets unphosphorylated NFATc2 for ubiquitination at acceptor lysine residues Lys-684/Lys-897 and hence labels the factor for subsequent proteasomal degradation. Conversely, mutagenesis-induced constitutive serine phosphorylation (Ser-215, Ser-219, and Ser-223) of the SP2 domain prevents NFATc2 from HDM2-mediated ubiquitination and degradation and consequently rescues cancer cells from growth suppression by zoledronic acid. In conclusion, this study demonstrates a critical role of the GSK-3β-HDM2 signaling loop in the regulation of NFATc2 protein stability and growth promotion and suggests that double targeting of this pathway is responsible, at least to a significant part, for the potent and reliable anti-tumoral effects of zoledronic acid.
    Journal of Biological Chemistry 08/2011; 286(33):28761-28771. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: RhoU is an atypical Rho family member with high homology to CDC42 but containing unique N- and C-terminal extensions. The mechanisms regulating RhoU activation, as well as its downstream effectors, are not fully characterized. We show that after epidermal growth factor (EGF) stimulation RhoU colocalizes with EGF receptor (EGFR) on endosomes, which requires both its N- and C-terminal extension sequences. Moreover, RhoU physically associates with activated EGFR in a GRB2-dependent manner through specific proline-rich motifs within its N-terminus. Mutation of these proline-rich sequences or suppression of GRB2 by RNA interference abrogates the interaction of RhoU with activated EGFR, as well as EGF-stimulated RhoU GTP binding. In addition, RhoU is involved in EGFR-mediated signaling, leading to AP1 transcriptional activity and cell migration in pancreatic cancer cells, events that require its interaction with the Grb2-EGFR complex. Taken together, the data suggest a unique regulatory mechanism by which RhoU interaction with SH3 adaptor proteins might serve to integrate growth factor receptor signaling with RhoU activation.
    Molecular biology of the cell 06/2011; 22(12):2119-30. · 5.98 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The aminobisphosphonate zoledronic acid has elicited significant attention due to its remarkable anti-tumoral activity, although its detailed mechanism of action remains unclear. Here, we demonstrate the existence of a nuclear GSK-3β-NFATc2 stabilization pathway that promotes breast and pancreatic cancer growth in vitro and in vivo and serves as a bona fide target of zoledronic acid. Specifically, the serine/threonine kinase GSK-3β stabilizes nuclear NFATc2 through phosphorylation of the serine-rich SP2 domain, thus protecting the transcription factor from E3-ubiquitin ligase HDM2-mediated proteolysis. Zoledronic acid disrupts this NFATc2 stabilization pathway through two mechanisms, namely GSK-3β inhibition and induction of HDM2 activity. Upon nuclear accumulation, HDM2 targets unphosphorylated NFATc2 for ubiquitination at acceptor lysine residues Lys-684/Lys-897 and hence labels the factor for subsequent proteasomal degradation. Conversely, mutagenesis-induced constitutive serine phosphorylation (Ser-215, Ser-219, and Ser-223) of the SP2 domain prevents NFATc2 from HDM2-mediated ubiquitination and degradation and consequently rescues cancer cells from growth suppression by zoledronic acid. In conclusion, this study demonstrates a critical role of the GSK-3β-HDM2 signaling loop in the regulation of NFATc2 protein stability and growth promotion and suggests that double targeting of this pathway is responsible, at least to a significant part, for the potent and reliable anti-tumoral effects of zoledronic acid.
    Journal of Biological Chemistry 05/2011; 286(33):28761-71. · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Glycogen synthase kinase-3 beta (GSK-3β) is overexpressed in a number of human malignancies and has been shown to contribute to tumor cell proliferation and survival. Although regulation of GSK-3β activity has been extensively studied, the mechanisms governing GSK-3β gene expression are still unknown. Using pancreatic cancer as a model, we find that constitutively active Ras signaling increases GSK-3β gene expression via the canonical mitogen-activated protein kinase signaling pathway. Analysis of the mechanism revealed that K-Ras regulates the expression of this kinase through two highly conserved E-twenty six (ETS) binding elements within the proximal region. Furthermore, we demonstrate that mutant K-Ras enhances ETS2 loading onto the promoter, and ETS requires its transcriptional activity to increase GSK-3β gene transcription in pancreatic cancer cells. Lastly, we show that ETS2 cooperates with p300 histone acetyltransferase to remodel chromatin and promote GSK-3β expression. Taken together, these results provide a general mechanism for increased expression of GSK-3β in pancreatic cancer and perhaps other cancers, where Ras signaling is deregulated.
    Oncogene 03/2011; 30(34):3705-15. · 7.36 Impact Factor
  • Source
    01/2011;
  • [show abstract] [hide abstract]
    ABSTRACT: Transforming growth factor beta (TGF-beta) has a dual role in carcinogenesis, acting as a growth inhibitor in early tumor stages and a promoter of cell proliferation in advanced diseases. Although this cellular phenomenon is well established, the underlying molecular mechanisms remain elusive. Here, we report that sequential induction of NFAT and c-Myc transcription factors is sufficient and required for the TGF-beta switch from a cell cycle inhibitor to a growth promoter pathway in cancer cells. Mechanistically, TGF-beta induces in a calcineurin-dependent manner the expression and activation of NFAT factors, which then translocate into the nucleus to promote c-Myc expression. In response to TGF-beta, activated NFAT factors bind to and displace Smad3 repressor complexes from the previously identified TGF-beta inhibitory element (TIE) to transactivate the c-Myc promoter. c-Myc in turn stimulates cell cycle progression and growth through up-regulation of D-type cyclins. Most importantly, NFAT knockdown not only prevents c-Myc activation and cell proliferation, but also partially restores TGF-beta-induced cell cycle arrest and growth suppression. Taken together, this study provides the first evidence for a Smad-independent master regulatory pathway in TGF-beta-promoted cell growth that is defined by sequential transcriptional activation of NFAT and c-Myc factors.
    Journal of Biological Chemistry 08/2010; 285(35):27241-50. · 4.65 Impact Factor
  • Zeitschrift Fur Gastroenterologie - Z GASTROENTEROL. 01/2010; 48(08).
  • Zeitschrift Fur Gastroenterologie - Z GASTROENTEROL. 01/2010; 48(08).
  • Zeitschrift Fur Gastroenterologie - Z GASTROENTEROL. 01/2010; 48(08).
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The calcineurin-responsive nuclear factor of activated T cells (NFAT) family of transcription factors was originally identified as a group of inducible nuclear proteins, which regulate transcription during T lymphocyte activation. However, following their initial discovery, a multitude of studies quickly established that NFAT proteins are also expressed in cells outside the immune system, where they participate in the regulation of the expression of genes influencing cell growth and differentiation. Ectopic activation of individual NFAT members is now recognized as an important aspect for oncogenic transformation in several human malignancies, most notably in pancreatic cancer. Sustained activation of the Ca(2+)/calcineurin/NFAT signaling pathway has emerged as a powerful regulatory principle governing pancreatic cancer cell growth. Activated NFAT proteins form complexes with key oncogenic proteins to regulate the transcription of master cell cycle regulators and proteins with functions in cell survival, migration and angiogenesis. This review pays particular attention to recent advances in our understanding of how the NFAT transcription pathway controls gene expression during development and progression of pancreatic cancer. and IAP.
    Pancreatology 01/2010; 10(4):416-22. · 2.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The lymphoid enhancer factor 1 (Lef-1) belongs to the nuclear transducers of canonical Wnt-signalling in embryogenesis and cancer. Lef-1 acts, in cooperation with beta-catenin, as a context-dependent transcriptional activator or repressor, thereby influencing multiple cellular functions such as proliferation, differentiation and migration. Here we report that an increased Lef-1 expression in human pancreatic cancer correlates with advanced tumour stages. In pancreatic tumours, two different transcripts of Lef-1 have been detected in various stages, as demonstrated by RT-PCR analysis. One transcript was identified as the full length Lef-1 (Lef-1 FL), whereas the second, shorter transcript lacked exon VI (Lef-1 Deltaexon VI) compared to the published sequence. Comparative analysis of these two Lef-1 variants revealed that they exhibit different cellular effects after transient expression in pancreatic carcinoma cells. Forced expression of Lef-1 Deltaexon VI inhibited E-cadherin expression in a beta-catenin-independent way. Increased amounts of Lef-1 Deltaexon VI resulted in reduced cellular aggregation and increased cell migration. Expression of Lef-1 FL, but not the newly identified Lef-1 Deltaexon VI, induced the expression of the cell cycle regulating proteins c-myc and cyclin D1 in cooperation with beta-catenin and it enhanced cell proliferation. Our findings indicate that expression of alternatively spliced Lef-1 isoforms is involved in the determination of proliferative or migratory characteristics of pancreatic carcinoma cells.
    International Journal of Cancer 09/2009; 126(5):1109-20. · 6.20 Impact Factor

Publication Stats

334 Citations
123.32 Total Impact Points

Institutions

  • 2013
    • Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas
      Barcino, Catalonia, Spain
  • 2012
    • Mayo Clinic - Rochester
      • Department of Immunology
      Rochester, Minnesota, United States
  • 2007–2012
    • Philipps-Universität Marburg
      • Klinik für Strahlendiagnostik (Marburg)
      Marburg, Hesse, Germany
  • 2011
    • Mayo Foundation for Medical Education and Research
      • College of Medicine
      Scottsdale, AZ, United States
  • 2008–2009
    • Universitätsklinikum Gießen und Marburg
      • Klinik für Gastroenterologie, Endokrinologie und Stoffwechsel
      Marburg, Hesse, Germany
  • 2006–2007
    • Universität Ulm
      • • Institute of General Medicine
      • • Clinic of Internal Medicine I
      Ulm, Baden-Wuerttemberg, Germany