G. H. Rieke

The University of Arizona, Tucson, Arizona, United States

Are you G. H. Rieke?

Claim your profile

Publications (927)3409.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyze very deep IRAC and MIPS photometry of $\sim$ 12,500 members of the 14 Myr old Double Cluster, h and $\chi$ Persei, building upon on our earlier, shallower Spitzer studies (Currie et al. 2007a, 2008a). Numerous likely members show infrared (IR) excesses at 8 {\mu}m and 24 $\mu$m indicative of circumstellar dust. The frequency of stars with 8 $\mu$m excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower-mass stars). Optical spectroscopy also identifies gas in about 2% of systems but with no clear trend between the presence of dust and gas. Spectral energy distribution (SED) modeling of 18 sources with detections at optical wavelengths through MIPS 24 $\mu m$ reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, although similar data for all disk-bearing members would provide better constraints. We combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times ($\tau_{o}$) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr respectively. Assuming a revised set of ages for some clusters (e.g. Bell et al. 2013), these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime. The transitional disk duration, averaged over multiple evolutionary pathways, is $\sim$ 1 Myr. Finally, 24 $\mu$m excess frequencies for 4-6 M$_{\odot}$ stars appear lower than for 1-2.5 M$_{\odot}$ stars in other 10-30 Myr old clusters.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here we characterize the Spitzer IRS spectra of 22 debris disks exhibiting 10 micron silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e. an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems with a range of ages, although the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Variability in the infrared emission from disks around pre-main sequence stars over the course of days to weeks appears to be common, but the physical cause of the changes in disk structure are not constrained. Here we present coordinated monitoring of one young cluster with the Spitzer and Chandra space telescopes aimed at studying the physical source of the variability. In fall 2011 we obtained ten epochs of Chandra ACIS photometry over a period of 30 days with a roughly 3 day cadence contemporaneous with 20 epochs of Spitzer [3.6],[4.5] photometry over 40 days with a roughly 2 day cadence of the IC 348 cluster. This cadence allows us to search for week to month long responses of the infrared emission to changes in the high-energy flux. We find no strong evidence for a direct link between the X-ray and infrared variability on these timescales among 39 cluster members with circumstellar disks. There is no significant correlation between the shape of the infrared and X-ray light curves, or between the size of the X-ray and infrared variability. Among the stars with an X-ray flare none showed evidence of a correlated change in the infrared photometry on timescales of days to weeks following the flare. This lack of connection implies that X-ray heating of the planet forming region of the disk is not significant, although we cannot rule out rapid or instantaneous changes in infrared emission.
    The Astrophysical Journal 07/2014; 793(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $\sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 $\mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $\mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($\sim$0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$\mu$m in preparation for JWST.
    07/2014;
  • András Gáspár, George H. Rieke
    [Show abstract] [Hide abstract]
    ABSTRACT: The Herschel "DUst around NEarby Stars" (DUNES) survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22 K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue, we carefully examine the alternative explanation that the detections arise from confusion with infrared cirrus and/or background galaxies that are not physically associated with the foreground stars. We find that such an explanation is consistent with all of these detections.
    The Astrophysical Journal 02/2014; 784(1):33. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 $\mu$m for 255 stars of types F4 - K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the HR diagram, to assign accurate stellar ages. Within this spectral type range, at 24 $\mu$m, $13.6 \pm 2.8 \%$ of the stars younger than 5 Gyr have excesses at the 3$\sigma$ level or more, while none of the older stars do, confirming previous work. At 70 $\mu$m, $22.5 \pm 3.6\%$ of the younger stars have excesses at $ \ge$ 3 $\sigma$ significance, while only $4.7^{+3.7}_{-2.2}$% of the older stars do. To characterize the far infrared behavior of debris disks more robustly, we double the sample by including stars from the DEBRIS and DUNES surveys. For the F4 - K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far infrared excess with spectral type (detected fractions of 21.9$^{+4.8}_{-4.3}\%$, late F; 16.5$^{+3.9}_{-3.3}\%$, G; and 16.9$^{+6.3}_{-5.0}\%$, early K). Taking this spectral type range together, there is a significant decline between 3 and 4.5 Gyr in the incidence of excesses with fractional luminosities just under $10^{-5}$. There is an indication that the timescale for decay of infrared excesses varies roughly inversely with the fractional luminosity. This behavior is consistent with theoretical expectations for passive evolution. However, more excesses are detected around the oldest stars than is expected from passive evolution, suggesting that there is late-phase dynamical activity around these stars.
    02/2014; 785(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH nearly complements other high-contrast planet imaging efforts by observing stars in L' band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. In this proceedings, we present the science goals for LEECH and a preliminary contrast curve from some early data.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This poster describes a simple model for exozodiacal emission that was developed to interpret observations of the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) project on the Large Binocular Telescope Interferometer (LBTI). HOSTS is a NASA-funded key science project using mid-infrared nulling interferometry at the LBTI to seach for faint exozodiacal dust (exozodi) in the habitable zones of nearby stars. The aim was to make a model that includes the fewest possible assumptions, so that it is easy to characterize how choices of model parameters affect what can be inferred from the observations. However the model is also sufficiently complex that it can be compared in a physically meaningful way with the level of dust in the Solar System, and can also be readily used to assess the impact of a detection (or of a non-detection) on the ability of a mission to detect Earth-like planets. Here we describe the model, and apply it to the sample of stars being searched by HOSTS to determine the zodi level (i.e., the number of Solar System zodiacal clouds) that would be needed for a detection for each star in the survey. Particular emphasis is given to our definition of a zodi, and what that means for stars of different luminosity, and a comparison is given between different zodi definitions justifying our final choice. The achievable exozodi levels range from 1-20 zodi for different stars in the prime sample for a 0.01% null depth, with a median level of 2.5 zodi.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using photometry at just two wavelengths it is possible to fit a blackbody to the spectrum of infrared excess that is the signature of a debris disc. From this the location of the dust can be inferred. However, it is well known that dust in debris discs is not a perfect blackbody. By resolving debris discs we can find the actual location of the dust and compare this to that inferred from the blackbody fit. Using the Herschel Space Observatory we resolved many systems as part of the DEBRIS survey. Here we discuss a sample of 9 discs surrounding A stars and find that the discs are actually located between 1 and 2.5 times further from their star than predicted by blackbody fits to the spectral energy distribution (SED). The variation in this ratio is due to differences in stellar luminosities, location of the dust, size distribution and composition of the dust.
    Proceedings of the International Astronomical Union 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). About 20% of field stars have cold debris disks created by the collisions and evaporation of planetesimals. Much less is known about warm circumstellar dust, such as that found in the vicinity of the Earth in our own system. This dust is generated in asteroidal collisions and cometary breakups, and current detection limits are at best ~500 times our system's level, i.e. 500 zodi. LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3σ). Exozodi of this brightness would be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets. Detections of warm dust will also reveal new information about planetary system architectures and evolution. We describe the target star selection by the LBTI Science Team to satisfy the goals of the HOSTS survey -- to fully inform target selection for a future exoEarth mission. We are interested in actual stars likely to be observed by a mission and stars whose observation will enable sensible extrapolations to those stars that cannot be observed. We integrated two approaches to generate the HOSTS target list. The mission-driven approach concentrates on F, G, and K-type stars that are the best targets for future direct observations of exoEarths, thereby providing model-independent “ground truth” dust observations. However, not every potential target of a future exoEarth mission can be observed with LBTI. The sensitivity-driven approach selects targets based only on what exozodi sensitivity could be achieved, without consideration of exoEarth mission constraints. This naturally selects more luminous stars (A and early F-type stars). In both cases, all stars are close enough to Earth such that their habitable zones are resolvable by LBTI and bright enough at N-band (10 μm) to provide excellent sensitivity. We also discuss observational and astrophysical motivations for excluding binaries of certain separations.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WFIRST is the highest priority space mission of the Decadal review, however, it is unlikely to begin in this decade primarily due to a anticipated NASA budget that is unlikely to have sufficient resources to fund such a mission. For this reason we present a lower cost mission that accomplishes all of the WFIRST science as described in the Design Reference Mission 1 with a probe class design. This is effort is motivated by a desire to begin WFIRST in a timely manner and within a budget that can fit within the assets available to NASA on a realistic basis. The design utilizes dichroics to form four focal planes all having the same field of view to use the majority of available photons from a 1.2 meter telescope.
    12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both Spitzer IRS and MIPS. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g. non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.
    The Astrophysical Journal 08/2013; 775(1). · 6.73 Impact Factor
  • Source
    Andras Gaspar, George H. Rieke
    [Show abstract] [Hide abstract]
    ABSTRACT: The Herschel "DUst around NEarby Stars (DUNES)" survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.
    08/2013;
  • K. D. Tyler, G. H. Rieke, L. Bai
    [Show abstract] [Hide abstract]
    ABSTRACT: Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 μm, Hα, and UV down to rates of 0.03 M ☉ yr–1. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 μm and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.
    The Astrophysical Journal 07/2013; 773(2):86. · 6.73 Impact Factor
  • Source
    Kate Y. L. Su, George H. Rieke
    [Show abstract] [Hide abstract]
    ABSTRACT: We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.
    Proceedings of the International Astronomical Union 07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present near-IR spectra of a sample of T Tauri, Herbig Ae/Be, and FU Ori objects. Using the FSPEC instrument on the Bok 90-inch telescope, we obtained K-band spectra with a resolution of ~3500. Here we present spectra of the v=2->0 and v=3->1 bandheads of ro-vibrational transitions of carbon monoxide. We observed these spectra over multiple epochs spaced by a few days and approximately one month. Several of our targets show CO emission or absorption features. However we see little evidence of variability in these features across multiple epochs. We compare our results with previous observations, and discuss the physical implications of non-variable CO emission across the sampled timescales.
    Monthly Notices of the Royal Astronomical Society 06/2013; 434(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The IMACS Cluster Building Survey uses the wide field spectroscopic capabilities of the IMACS spectrograph on the 6.5 m Baade Telescope to survey the large-scale environment surrounding rich intermediate-redshift clusters of galaxies. The goal is to understand the processes which may be transforming star-forming field galaxies into quiescent cluster members as groups and individual galaxies fall into the cluster from the surrounding supercluster. This first paper describes the survey: the data taking and reduction methods. We provide new calibrations of star formation rates (SFRs) derived from optical and infrared spectroscopy and photometry. We demonstrate that there is a tight relation between the observed SFR per unit B luminosity, and the ratio of the extinctions of the stellar continuum and the optical emission lines. With this, we can obtain accurate extinction-corrected colors of galaxies. Using these colors as well as other spectral measures, we determine new criteria for the existence of ongoing and recent starbursts in galaxies.
    The Astrophysical Journal 05/2013; 770(1):61. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We use mid-infrared (MIR) spectroscopy from the Spitzer Infrared Spectrograph to study the nature of star-formation and supermassive black hole accretion for a sample of 65 IR-luminous galaxies at 0.02 < z < 0.6 with F(24 μm) > 1.2 mJy. The MIR spectra cover wavelengths 5-38 μm, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. Our sample of galaxies corresponds to a range of total IR luminosity, L IR = L(8-1000 μm) = 1010-1012L ☉ (median L IR of 3.0 × 1011L ☉). We divide our sample into a subsample of galaxies with Spitzer Infrared Array Camera 3.6-8.0 μm colors indicative of warm dust heated by an active galactic nucleus (AGN; IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission equivalent widths, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II] λ12.8 μm emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. We compare the ratio of PAH luminosity to the total IR luminosity, and we show that for most IRAGN star-formation accounts for 10%-50% of the total IR luminosity. We also find no measurable difference between the PAH luminosity ratios of L 11.3/L 7.7 and L 6.2/L 7.7 for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. Interestingly, a small subset of galaxies (8 of 65 galaxies) show a strong excess of [O IV] λ25.9 μm emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low PAH emission and low [Ne II] emission of the IRAGN and [O IV]-excess objects imply the IR luminosity of these objects is dominated by processes associated with the AGN. Because these galaxies lie in the "green valley" of the optical color-magnitude relation and have low implied SFRs, we argue their hosts have declining SFRs and these objects will transition to the red sequence unless some process restarts their star-formation.
    The Astrophysical Journal 05/2013; 769(1):75. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We use Spitzer IRS spectroscopy to study the nature 65 IR-luminous galaxies at 0.02 < z < 0.6 with F(24micron) > 1.2mJy. The IRS spectra cover wavelengths spanning the PAH features and important atomic diagnostic lines. Our sample corresponds to L(IR) = L(8-1000micron) = 10^10-10^12 Lsun. We divide our galaxies into those with Spitzer IRAC colors indicative of warm dust heated by an AGN (IRAGN) and those whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission EWs, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and non-IRAGN samples, the PAH luminosities correlate strongly with the [Ne II] emission, from which we conclude that the PAH luminosity directly traces the instantaneous SFR in both the IRAGN and non-IRAGN galaxies. We compare the ratio of PAH luminosity to the total IR luminosity and show that for most IRAGN star-formation accounts for 10-50% of the L(IR). We also find no measurable difference between the PAH luminosity ratios of L(11.3)/L(7.7) and L(6.2)/L(7.7) for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. A small subset of galaxies show excess of [O IV] emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low PAH emission and low [Ne II] emission of the IRAGN and [O IV]-excess objects imply they have low SFRs and their IR luminosity is dominated by processes associated with the AGN.
    04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a 3-5um LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low-masses/mass ratios (M_BD < 25M_Jup; M_BD / M_star ~ 1-2%), and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4um and 24um photometry to constrain the properties of the BDs and identify evidence for circumprimary/secondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24um excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4um excess, nor does its primary; however, the system as a whole has a modest 24um excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4um colors of HIP 78530B match a spectral type of M3+-2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5M_Jup beyond 175AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.
    The Astrophysical Journal 02/2013; 767(1). · 6.73 Impact Factor

Publication Stats

18k Citations
3,409.27 Total Impact Points

Institutions

  • 1971–2014
    • The University of Arizona
      • • Department of Astronomy
      • • Department of Planetary Sciences
      Tucson, Arizona, United States
  • 2012
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom
    • University of Hawaiʻi at Mānoa
      • Institute of Astronomy
      Honolulu, Hawaii, United States
  • 2011
    • University of Victoria
      • Department of Physics and Astronomy
      Victoria, British Columbia, Canada
  • 2010
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States
  • 2009
    • University of Michigan
      • Department of Astronomy
      Ann Arbor, Michigan, United States
    • University of Szeged
      • Department of Optics and Quantum Electronics
      Algyő, Csongrád, Hungary
    • University of Cologne
      • I. Institute of Physics
      Köln, North Rhine-Westphalia, Germany
  • 2005–2009
    • California Institute of Technology
      • • Jet Propulsion Laboratory
      • • Department of Astronomy
      Pasadena, California, United States
    • SETI Institute
      Mountain View, California, United States
  • 2008
    • University of Chicago
      • Department of Astronomy and Astrophysics
      Chicago, Illinois, United States
  • 2006
    • University of California, Santa Cruz
      • Department of Astronomy and Astrophysics
      Santa Cruz, California, United States
    • Cornell University
      Ithaca, New York, United States
  • 2001
    • University of California, Berkeley
      • Department of Physics
      Berkeley, CA, United States
    • University of Hertfordshire
      Hatfield, England, United Kingdom
  • 1999
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 1998
    • Central University of Venezuela
      Caracas, Distrito Federal, Venezuela
  • 1993
    • University of Barcelona
      Barcino, Catalonia, Spain
  • 1992
    • University of Toronto
      Toronto, Ontario, Canada
  • 1989
    • National Optical Astronomy Observatory
      Tucson, Arizona, United States
  • 1984
    • St. John's College
      Tucson, Arizona, United States
  • 1982
    • Hawaii Pacific University
      Honolulu, Hawaii, United States
  • 1981
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom