Are you The Fermi-LAT collaboration: A. A. Abdo et al?

Claim your profile

Publications (3)0 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Mrk 421 during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well-described by a power-law function with photon index Gamma=1.78 +/- 0.02 and average photon flux F(>0.3 GeV)=(7.23 +/- 0.16) x 10^{-8} ph cm^{-2} s^{-1}. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on 7-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux), but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5-month-long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broad band SED was reproduced with a leptonic (one-zone Synchrotron Self-Compton) and a hadronic model (Synchrotron Proton Blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.
    06/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average LAT gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of 2), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3GeV. In this paper, we also present the first results from the 4.5-month-long multifrequency campaign (2009 March 15 - August 1) on Mrk 501, which included the VLBA, Swift, RXTE, MAGIC and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton model. In the framework of this model, we find that the dominant emission region is characterized by a size <~ 0.1 pc (comparable within a factor of few to the size of the partially-resolved VLBA core at 15-43 GHz), and that the total jet power (~10^{44} erg s^{-1}) constitutes only a small fraction (~10^{-3}) of the Eddington luminosity. The energy distribution of the freshly-accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3GeV-10TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. Comment: Accepted for publication in ApJ. 68 pages, 12 figures and 2 tables. Corresponding authors: David Paneque (dpaneque@slac.stanford.edu) and Lukasz Stawarz (stawarz@astro.isas.jaxa.jp)
    11/2010;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fit using standard leptonic models with and without an external radiation field for inverse-Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths. Comment: Accepted for publication in ApJ. 32 pages, 8 figures and 5 tables. Corresponding author: Luis C. Reyes (lcreyes@uchicago.edu)
    11/2010;