Yu-Ting Kuo

Academia Sinica, T’ai-pei, Taipei, Taiwan

Are you Yu-Ting Kuo?

Claim your profile

Publications (5)21.6 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular matrix (ECM) proteins, such as fibronectin, laminin and collagen IV, play important roles in many cellular behaviors, including cell adhesion and spreading. Understanding their adsorption behavior on surfaces with different natures is helpful for studying the cellular responses to environments. By tailoring the chemical composition in binary acidic (anionic) and basic (cationic) functionalized self-assembled monolayer (SAM) modified gold substrates, variable surface potentials can be generated. To examine how surface potential affects the interaction between ECM proteins and substrates, a quartz crystal microbalance with dissipation detection (QCM-D) was used. To study the interaction under physiological conditions, the ionic strength and pH were controlled using phosphate buffered saline at 37°C, and the zeta-potentials of the SAM-modified Au and protein were determined using an electrokinetic analyzer and phase analysis light scattering, respectively. During adsorption processes, the shifts in resonant frequency (f) and energy dissipation (D) were acquired simultaneously, and the weight change was calculated using the Kelvin-Voigt model. The results reveal that slightly charged protein can be adsorbed on a highly charged SAM, even where both surfaces are negatively charged. This behavior is attributed to the highly charged SAM, which polarizes the protein microscopically and the Debye interaction, as well as other short-range interactions like steric force, hydrogen-bonding, direct bonding, charged domains within the protein structure, etc. allow adsorption, although the macroscopic electrostatic interaction discourages adsorption. For surfaces with a moderate potential, proteins are not significantly polarized by the surface, and the interaction can be predicted through simple electrostatic attraction. Furthermore, surface-induced self-assembly of protein molecule also affects the adsorbed structures and kinetics. The adsorbed layer properties, such as rigidity and packing behaviors, were further investigated using the D-f plot and phase detection microscopy (PDM) imaging.
    Langmuir 08/2014; 30(34). DOI:10.1021/la5020362 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell adhesion is central to many cell behaviors including survival, differentiation, and motility. With the recent development of biomaterials and medical instrumentation, cell behaviors on artificial biosurfaces have gained attention from the research community. Self-assembled monolayers (SAMs) are known for their excellent ability to modify surfaces. To achieve more precise control of surface properties, mixed 6-amino-1-hexanethiol and 6-mercaptohexanonic acid were deposited on a gold substrate, and in a physiological environment, arbitrary zeta potentials between −187 and +6 mV were obtained. This binary SAM system elucidated the effect of surface potential on the adhesion and proliferation of NIH3T3 cells cultured on these surfaces. Cell adhesion, density, morphology, and proliferation were investigated by optical, fluorescence, and scanning electron microscopes. It was found that increased surface potential promoted cell attachment; hence, the initial cell density increased. However, the apparent proliferation rate decreased with increasing surface potential due to contact inhibition between adjacent NIH3T3 cells at higher density. When the initial density was low and cells did not contact each other, surface potential had little or no effect on proliferation. A more positive surface potential also changed the cell shape from bipolar to spreading and allowed more cell–cell and cell–substrate interactions due to the enhanced cell adhesion.
    The Journal of Physical Chemistry C 06/2014; 118(26):14464–14470. DOI:10.1021/jp504662c · 4.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold is known to have good biocompatibility because of its inert activity and the surface property can be easily tailored with self-assembled monolayers (SAMs). In previous works, gold surfaces were tailored with homogeneously mixed amine and carboxylic acid functional groups to generate surfaces with a series of isoelectronic points (IEPs). In other words, by tailoring the chemical composition in binary SAMs, different surface potentials can be obtained under controlled pH environments. To understand how the surface potentials affect the interaction at the interface, a binary-SAMs-modified Au electrode on a quartz crystal microbalance with dissipation detection (QCM-D) was used owing to the high weight sensitivity of QCM-D. In QCM-D, the frequency shift and the energy dissipation are monitored simultaneously to determine the adsorption behaviors of the plasmid DNA to surfaces of various potentials in Tris-buffered NaCl solutions of different pH. The results revealed that the plasmid DNA can be adsorbed on the SAM-modified surfaces electrostatically; thus, in general, the amount of adsorbed plasmid DNA decreased with increasing environmental pH and the decreasing ratio of the amine functional groups on the surfaces owing to weaker positive potentials on the surface. For the high amine-containing surfaces, due to the strong electrostatic attraction, denser films were observed, and thus, the apparent thickness decreased slightly. The negatively charged carboxylic acid surfaces can still adsorb the negatively charged plasmid DNA at some conditions. In other words, the electrostatic model cannot explain the adsorption behavior completely, and the induced dipole (Debye) interaction between the charged and polarizable molecules needs to be considered as well.
    Journal of Colloid and Interface Science 06/2012; 382(1):97-104. DOI:10.1016/j.jcis.2012.06.002 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar(+) was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C(60)(+) bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C(60)(+) beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C(60)(+) sputtering. Furthermore, because C(60)(+) is responsible for generating the molecular ions, the dosage of the auxiliary Ar(+) does not significantly affect the quantification curves.
    Analytica chimica acta 03/2012; 718:64-9. DOI:10.1016/j.aca.2011.12.064 · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study demonstrated that the work function (Φ) of Au substrates can be fine-tuned by using series ratios of binary self-assembled monolayers (SAMs). By using pure amine- and carboxylic acid-bearing alkanethiol SAM on gold substrates, Φ of Au changed from 5.10 to 5.16 and 5.83, respectively, as determined by ultra-violet photoelectron spectrometry (UPS). The shift in Φ due to the use of different functional groups was rationalized by considering the dipole moments of the molecules anchored on the Au surface. A series of binary SAMs were fabricated by mixing carboxylic acid- and amine-terminated alkanethiols in the deposition solution. By mixing these functional groups in SAMs, a linear correlation between Φ with respect to chemical composition (hence the effective dipole moment on the Au surface) was observed. It was found that arbitrary Φ between extremes (5.16 and 5.83) controlled by respective functional groups can be obtained by changing the chemical composition of SAMs. The Scanning Kelvin Probe (SKP) was also used to measure the contact potential difference (CPD) between SAMs and referencing Au on a patterned substrate prepared by photo-lithography. It was found that the CPD of SAMs with different chemical compositions correlates to their Φ. However, the magnitude of the CPD was smaller than the difference in Φ measured by UPS that was possibly due to the adsorption of contaminants in air.
    Physical Chemistry Chemical Physics 03/2011; 13(10):4335-9. DOI:10.1039/c0cp02437f · 4.49 Impact Factor

Publication Stats

34 Citations
21.60 Total Impact Points


  • 2014
    • Academia Sinica
      • Research Center for Applied Sciences
      T’ai-pei, Taipei, Taiwan
  • 2011-2012
    • National Taiwan University
      • Department of Materials Science and Engineering
      T’ai-pei, Taipei, Taiwan