Yun Kang

University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States

Are you Yun Kang?

Claim your profile

Publications (17)68.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient for P. aeruginosa during CF lung infection.
    PLoS ONE 01/2014; 9(7):e103778. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.
    PLoS ONE 01/2013; 8(5):e64554. · 3.73 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia pseudomallei, the cause of serious and life-threatening diseases in humans, is of national biodefense concern because of its potential use as a bioterrorism agent. This microbe is listed as a select agent by the CDC; therefore, development of vaccines is of significant importance. Here, we further investigated the growth characteristics of a recently created B. pseudomallei 1026b Δasd mutant in vitro, in a cell model, and in an animal model of infection. The mutant was typified by an inability to grow in the absence of exogenous diaminopimelate (DAP); upon single-copy complementation with a wild-type copy of the asd gene, growth was restored to wild-type levels. Further characterization of the B. pseudomallei Δasd mutant revealed a marked decrease in RAW264.7 murine macrophage cytotoxicity compared to the wild type and the complemented Δasd mutant. RAW264.7 cells infected by the Δasd mutant did not exhibit signs of cytopathology or multinucleated giant cell (MNGC) formation, which were observed in wild-type B. pseudomallei cell infections. The Δasd mutant was found to be avirulent in BALB/c mice, and mice vaccinated with the mutant were protected against acute inhalation melioidosis. Thus, the B. pseudomallei Δasd mutant may be a promising live attenuated vaccine strain and a biosafe strain for consideration of exclusion from the select agent list.
    Infection and immunity 08/2011; 79(10):4010-8. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Total transcript amplification (TTA) from single eukaryotic cells for transcriptome analysis is established, but TTA from a single prokaryotic cell presents additional challenges with much less starting material, the lack of poly(A)-tails, and the fact that the messages can be polycistronic. Here, we describe a novel method for single-bacterium TTA using a model organism, Burkholderia thailandensis, exposed to a subinhibitory concentration of the antibacterial agent, glyphosate. Utilizing a B. thailandensis microarray to assess the TTA method showed low fold-change bias (less than twofold difference and Pearson correlation coefficient R ≈ 0.87-0.89) and drop-outs (4%-6% of 2842 detectable genes), compared with data obtained from the larger-scale nonamplified RNA samples. Further analysis of the microarray data suggests that B. thailandensis, when exposed to the aromatic amino acid biosynthesis inhibitor glyphosate, induces (or represses) genes to possibly recuperate and balance the intracellular amino acid pool. We validated our single-cell microarray data at the multi-cell and single-cell levels with lacZ and gfp reporter-gene fusions, respectively. Sanger sequencing of 192 clones generated from the TTA product of a single cell, with and without enrichment by elimination of rRNA and tRNA, detected only B. thailandensis sequences with no contamination. These data indicate that RNA-seq of TTA from a single cell is possible using this novel method.
    Genome Research 06/2011; 21(6):925-35. · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phage λ-Red proteins are powerful tools for pulling and knocking out chromosomal fragments but have been limited to the γ-proteobacteria. Procedures are described here to easily knock out (KO) and pull out (PO) chromosomal DNA fragments from naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. This system takes advantage of published compliant counterselectable and selectable markers (sacB, pheS, gat and the arabinose-utilization operon) and λ-Red mutant proteins. pheS-gat (KO) or oriT-ColE1ori-gat-ori1600-rep (PO) PCR fragments are generated with flanking 40- to 45-bp homologies to targeted regions incorporated on PCR primers. One-step recombination is achieved by incubation of the PCR product with cells expressing λ-Red proteins and subsequent selection on glyphosate-containing medium. This procedure takes ~10 d and is advantageous over previously published protocols: (i) smaller PCR products reduce primer numbers and amplification steps, (ii) PO fragments suitable for downstream manipulation in Escherichia coli are obtained and (iii) chromosomal KO increases flexibility for downstream processing.
    Nature Protocol 01/2011; 6(8):1085-104. · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several vectors that facilitate stable fluorescent labeling of Burkholderia pseudomallei and Burkholderia thailandensis were constructed. These vectors combined the effectiveness of the mini-Tn7 site-specific transposition system with fluorescent proteins optimized for Burkholderia spp., enabling bacterial tracking during cellular infection.
    Applied and Environmental Microbiology 11/2010; 76(22):7635-40. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD(-)/fadR(-) double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD(-)/fadR(-) mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.
    PLoS ONE 01/2010; 5(10):e13557. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic manipulation of the category B select agents Burkholderia pseudomallei and Burkholderia mallei has been stifled due to the lack of compliant selectable markers. Hence, there is a need for additional select-agent-compliant selectable markers. We engineered a selectable marker based on the gat gene (encoding glyphosate acetyltransferase), which confers resistance to the common herbicide glyphosate (GS). To show the ability of GS to inhibit bacterial growth, we determined the effective concentrations of GS against Escherichia coli and several Burkholderia species. Plasmids based on gat, flanked by unique flip recombination target (FRT) sequences, were constructed for allelic-replacement. Both allelic-replacement approaches, one using the counterselectable marker pheS and the gat-FRT cassette and one using the DNA incubation method with the gat-FRT cassette, were successfully utilized to create deletions in the asd and dapB genes of wild-type B. pseudomallei strains. The asd and dapB genes encode an aspartate-semialdehyde dehydrogenase (BPSS1704, chromosome 2) and dihydrodipicolinate reductase (BPSL2941, chromosome 1), respectively. Mutants unable to grow on media without diaminopimelate (DAP) and other amino acids of this pathway were PCR verified. These mutants displayed cellular morphologies consistent with the inability to cross-link peptidoglycan in the absence of DAP. The B. pseudomallei 1026b Deltaasd::gat-FRT mutant was complemented with the B. pseudomallei asd gene on a site-specific transposon, mini-Tn7-bar, by selecting for the bar gene (encoding bialaphos/PPT resistance) with PPT. We conclude that the gat gene is one of very few appropriate, effective, and beneficial compliant markers available for Burkholderia select-agent species. Together with the bar gene, the gat cassette will facilitate various genetic manipulations of Burkholderia select-agent species.
    Applied and Environmental Microbiology 08/2009; 75(19):6062-75. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5beta-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.
    Molecular Microbiology 07/2009; 73(1):120-36. · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are few appropriate single-copy genetic tools for most Burkholderia species, and the high level of antibiotic resistance in this genus further complicates the development of genetic tools. In addition, the utilization of resistance genes for clinically important antibiotics is prohibited for the bioterrorism agents Burkholderia pseudomallei and Burkholderia mallei, necessitating the development of additional nonantibiotic-based genetic tools. Three single-copy systems devoid of antibiotic selection based on two nonantibiotic selectable markers, tellurite resistance (Tel(r)) and Escherichia coli aspartate-semialdehyde dehydrogenase (asd(Ec)), were developed to facilitate genetic manipulation in Burkholderia species. These systems include one mariner transposon, a mini-Tn7-derived site-specific transposon, and six FRT reporter fusion vectors based on the lacZ, gfp, and luxCDABE reporter genes. Initially, we showed that the random mariner transposon pBT20-Deltabla-Tel(r)-FRT efficiently transposed within Burkholderia cenocepacia, Burkholderia thailandensis, B. pseudomallei, and B. mallei. We then utilized the mini-Tn7-Tel(r)-based transposon vector (mini-Tn7-Tel(r)-betBA) and a transposase-containing helper plasmid (pTNS3-asd(Ec)) to complement the B. thailandensis DeltabetBA mutation. Next, one of the FRT-lacZ fusion vectors (pFRT1-lacZ-Tel(r)) was integrated by Flp (encoded on a helper plasmid, pCD13SK-Flp-oriT-asd(Ec)) to construct the B. thailandensis DeltabetBA::FRT-lacZ-Tel(r) reporter fusion strain. The betBA operon was shown to be induced in the presence of choline and under osmotic stress conditions by performing beta-galactosidase assays on the B. thailandensis DeltabetBA::FRT-lacZ-Tel(r) fusion strain. Finally, we engineered B. thailandensis DeltabetBA::FRT-gfp-Tel(r) and DeltabetBA::FRT-lux-Tel(r) fusion strains by utilizing fusion vectors pFRT1-gfp-Tel(r) and pFRT1-lux-Tel(r), respectively. The induction of the betBA operon by choline and osmotic stress was confirmed by performing fluorescent microscopy and bioluminescent imaging analyses.
    Applied and Environmental Microbiology 05/2009; 75(12):4015-27. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allelic replacement in the Burkholderia genus has been problematic due to the lack of appropriate counter-selectable and selectable markers. The counter-selectable marker sacB, commonly used in gram-negative bacteria, is nonselective on sucrose in many Burkholderia species. In addition, the use of antibiotic resistance markers of clinical importance for the selection of desirable genetic traits is prohibited in the United States for two potential bioterrorism agents, Burkholderia mallei and Burkholderia pseudomallei. Here, we engineered a mutated counter-selectable marker based on the B. pseudomallei PheS (the alpha-subunit of phenylalanyl tRNA synthase) protein and tested its effectiveness in three different Burkholderia species. The mutant PheS protein effectively killed 100% of the bacteria in the presence of 0.1% p-chlorophenylalanine. We assembled the mutant pheS on several allelic replacement vectors, in addition to constructing selectable markers based on tellurite (Tel(r)) and trimethoprim (Tp(r)) resistance that are excisable by flanking unique FLP recombination target (FRT) sequences. As a proof of concept, we utilized one of these gene replacement vectors (pBAKA) and the Tel(r)-FRT cassette to produce a chromosomal mutation in the Burkholderia thailandensis betBA operon, which codes for betaine aldehyde dehydrogenase and choline dehydrogenase. Chromosomal resistance markers could be excised by the introduction of pFLP-AB5 (Tp(r)), which is one of two constructed flp-containing plasmids, pFLP-AB4 (Tel(r)) and pFLP-AB5 (Tp(r)). These flp-containing plasmids harbor the mutant pheS gene and allow self curing on media that contain p-chlorophenylalanine after Flp-FRT excision. The characterization of the Delta betBA::Tel(r)-FRT and Delta betBA::FRT mutants indicated a defect in growth with choline as a sole carbon source, while these mutants grew as well as the wild type with succinate and glucose as alternative carbon sources.
    Applied and Environmental Microbiology 08/2008; 74(14):4498-508. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beta-oxidative enzymes for fatty acid degradation (Fad) of long-chain fatty acids (LCFAs) are induced in vivo during lung infection in cystic fibrosis patients, and this may contribute to nutrient acquisition and pathogenesis of Pseudomonas aeruginosa. The promoter region of one P. aeruginosa beta-oxidation operon, fadBA5 (PA3014 and PA3013), was mapped. Focusing on the transposon mutagenesis of strain PAO1 carrying the P(fadBA5)-lacZ fusion, a regulator for the fadBA5 operon was identified to be PsrA (PA3006). Transcriptome analysis of the DeltapsrA mutant indicated its importance in regulating beta-oxidative enzymes. These microarray data were confirmed by real-time RT-PCR analyses of the fadB5 and lipA (encoding a lipase) genes. Induction of the fadBA5 operon was demonstrated to respond to novel LCFA signals, and this induction required the presence of PsrA, suggesting that LCFAs bind to PsrA to derepress fadBA5. Electrophoretic mobility shift assays indicate specific binding of PsrA to the fadBA5 promoter region. This binding is disrupted by specific LCFAs (C(18:1)(Delta9), C(16:0), C(14:0) and, to a lesser extent, C(12:0)), but not by other medium- or short-chain fatty acids or the first intermediate of beta-oxidation, acyl-CoA. It is shown here that PsrA is a fadBA5 regulator that binds and responds to LCFA signals in P. aeruginosa.
    Microbiology 06/2008; 154(Pt 6):1584-98. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Without prior knowledge of the promoters of various genes in bacteria, it can be difficult to study gene regulation using reporter-gene fusions. Regulation studies of promoters are ideal at their native locus, which do not require prior knowledge of promoter regions. Based on a previous study with FRT-lacZ-KmR constructs, we constructed two novel FRT-lacZ-GmR plasmids. This allows easy engineering of Pseudomonas aeruginosa reporter-gene fusions, post-mutant construction, with the Flp-FRT system. We demonstrate the usefulness of one of these FRT-lacZ-GmR plasmids to study the regulation of the fadAB1 operon in P. aeruginosa at its native locus. The fadAB1 operon, involved in fatty acid (FA) degradation, was significantly induced in the presence of several medium chain-length fatty acids (MCFA) and, to a lesser degree, long chain-length fatty acids (LCFA). In addition to the previous work on the FRT-lacZ-KmR tools, these new constructs increase the repertoire of tools that can be applied to P. aeruginosa or other species and strains of bacteria where kanamycin resistance may not be appropriate.
    Plasmid 04/2008; 59(2):111-8. · 1.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the hallmarks of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients is very-high-cell-density (HCD) replication in the lung, allowing this bacterium to induce virulence controlled by the quorum-sensing systems. However, the nutrient sources sustaining HCD replication in this chronic infection are largely unknown. Here, we performed microarray studies of P. aeruginosa directly isolated from the lungs of CF patients to demonstrate its metabolic capability and virulence in vivo. In vivo microarray data, confirmed by real-time reverse transcription-PCR, indicated that the P. aeruginosa population expressed several genes for virulence, drug resistance, and utilization of multiple nutrient sources (lung surfactant lipids and amino acids) contributing to HCD replication. The most abundant lung surfactant lipid molecule, phosphatidylcholine (PC), induces key genes of P. aeruginosa pertinent to PC degradation in vitro as well as in vivo within the lungs of CF patients. The results support recent research indicating that P. aeruginosa exists in the lungs of CF patients as a diverse population with full virulence potential. The data also indicate that there is deregulation of several pathways, suggesting that there is in vivo evolution by deregulation of a large portion of the transcriptome during chronic infection in CF patients. To our knowledge, this is the first in vivo transcriptome analysis of P. aeruginosa in a natural infection in CF patients, and the results indicate several important aspects of P. aeruginosa pathogenesis, drug resistance, nutrient utilization, and general metabolism within the lungs of CF patients.
    Infection and Immunity 12/2007; 75(11):5313-24. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The T7-expression system has been very useful for protein expression in Escherichia coli. However, it is often desirable to over-express proteins in species other than E. coli. Here, we constructed an inducible broad-host-range T7-expression transposon, which allows simple one-step construction of T7-expression strains in various species, providing the option to over-express proteins of interest in a broader host-range. This transposon contains the T7 RNA polymerase driven by the lacUV5 promoter, which is repressed by the lac-repressor. Leaky expression is prevented by the presence of T7-lysozyme on this construct. The complete T7-expression system is flanked by mariner transposon repeats of the suicidal R6Kgammaori plasmid, pBT20-Deltabla. Stable integration of the whole system is possible by a one-step selection for a Flp-excisable Gm(R)-marker. We showed the engineering of E. coli, Pseudomonas aeruginosa, Erwinia carotovora, Salmonella choleraesuis, Agrobacterium tumefaciens, and Chromobacterium violaceum strains with this construct and demonstrated the expression of the Burkholderia pseudomallei Asd protein in these hosts, by induction with isopropyl-beta-d-thiogalactopyranoside (IPTG).
    Protein Expression and Purification 11/2007; 55(2):325-33. · 1.43 Impact Factor

Publication Stats

228 Citations
68.55 Total Impact Points

Institutions

  • 2007–2014
    • University of Hawaiʻi at Mānoa
      • • Department of Microbiology
      • • Department of Molecular Biosciences and Bioengineering
      Honolulu, Hawaii, United States