Are you Xiao-Ping Chen?

Claim your profile

Publications (3)7.38 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycopyrronium bromide (GB) is a muscarinic receptor antagonist that has been used as a long-acting bronchodilator in chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to investigate the anti-inflammatory activity of inhaled GB in a cigarette smoke-induced acute lung inflammation mouse model. We found that aerosol pre-treatment with GB suppresses the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) in cigarette smoke (CS)-exposed mice. GB at doses of 300 and 600μg/ml significantly inhibited the CS-induced increases in the mRNA and protein expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β1 in lung tissues and the BALF. Moreover, GB at a dose of 600μg/ml significantly inhibited the CS-induced changes in glutathione (GSH) and myeloperoxidase (MPO) activities in the BALF, decreased the CS-induced expression of matrix metalloproteinases (MMP)-9, and increased the CS-induced expression of tissue inhibitor of metalloproteinases (TIMP)-1, as determined through the immunohistochemical staining of lung tissue. Our results demonstrate the beneficial effects of inhaled GB on the inflammatory reaction in COPD.
    International immunopharmacology 01/2014; DOI:10.1016/j.intimp.2013.12.021 · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we have investigated the antagonist affinity, efficacy and duration of action of bencycloquidium bromide (BCQB), a selective muscarinic M(3) receptor antagonist, as a possible clinical bronchodilator for the treatment of chronic obstructive pulmonary disease (COPD) and asthma. In competition studies, BCQB showed high affinity toward the M(3) receptor in Chinese hamster ovary (CHO) cells (M(3) pKi=8.21, M(2) pKi=7.21, and M(1) pKi=7.86); pA(2)=8.85, 8.71 and 8.57 in methacholine-induced contraction of trachea, ileum and urinary bladder, 8.19 in methacholine-induced bradycardia of right atrium in vitro, respectively. In function studies, duration of inhibition of carbachol-induced tonic contraction, BCQB and ipratropium had a very similar onset and offset of action, but onset faster and offset slower than that of tiotropium. After treatment with intratracheally instilled or the inhalation route, BCQB protects against methacholine or antigen-induced bronchoconstriction in a dose-dependent manner in the normal and sensitized guinea pigs in vivo. BCQB and ipratropium-induced inhibitory activity was short lasting, as it declined quickly when compared to tiotropium. These results suggest that BCQB bind muscarinic M(3) receptors with high affinity. On this basis we speculate that a putative BCQB-based therapy for COPD might require more than once-a-day administration to be as effective as the currently employed once-daily therapy with tiotropium. Nevertheless, Inhalable M(3)-selective compounds may spare M(2)-cardiac receptors and reduce the risks of cardiovascular events associated with the long-term treatment of these agents.
    European journal of pharmacology 03/2011; 655(1-3):74-82. DOI:10.1016/j.ejphar.2011.01.017 · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: M(3) muscarinic receptors are localized on inflammatory cells, airway smooth muscle, and submucosal glands, known to mediate bronchoconstriction, mucus secretion, and airway remodeling. It is hypothesized bencycloquidium bromide (BCQB), a novel M(3) receptor antagonist, might have potential effects on airway hyperresponsiveness, inflammation and airway remodeling in a murine model of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was examined to determine the total and differential cell counts, and cytokine levels. Lung tissues were evaluated for cell infiltration, mucus hypersecretion, airway remodeling, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Inhalation administration of BCQB significantly not only reduced ovalbumin-induced airway hyperresponsiveness comparing to methacholine, and prevented the ovalbumin-induced increase in total cell counts and eosinophil counts. Reverse transcriptase polymerase chain reaction analysis of whole lung lysates revealed that BCQB markedly suppressed ovalbumin-induced mRNA expression of eotaxin, IL-5, IL-4 and MMP-9, and increased mRNA expression of IFN-γ and TIMP-1 in a dose-dependent manner. Substantial IFN-γ/IL-4 (Th1/Th2) levels were recovered in bronchoalveolar lavage fluid after BCQB treatment. In addition, histological studies showed that BCQB dramatically inhibited ovalbumin-induced lung tissue eosinophil infiltration, airway mucus production and collagen deposition in lung tissues. Results reported in current paper suggest that M(3) receptors antagonist may provide a novel therapeutic approach to treat airway inflammation, hyperresponsiveness and remodeling.
    European journal of pharmacology 03/2011; 655(1-3):83-90. DOI:10.1016/j.ejphar.2011.01.024 · 2.59 Impact Factor