Vitor Silva

Instituto Português de Oncologia, Oporto, Porto, Portugal

Are you Vitor Silva?

Claim your profile

Publications (4)17.28 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Periprostatic (PP) adipose tissue surrounds the prostate, an organ with high predisposition to become malignant. Frequently growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer. METHODS: Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to donors' body mass index characteristics (OB/OW vs. lean) and prostate disease (extra prostatic cancer vs. organ confined prostate cancer vs. benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. RESULTS: In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (e.g. FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related with the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. CONCLUSIONS: Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression. Please see related article: http://www.biomedcentral.com/1741-7015/10/109.
    BMC Medicine 09/2012; 10(1):108. · 6.68 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Our findings suggest that the PP depot has the potential to modulate extra-prostatic tumor cells' microenvironment through increased MMPs activity and to promote prostate cancer cell survival and migration. Adipocyte-derived factors likely have a relevant proliferative and motile role.
    Journal of Experimental & Clinical Cancer Research 04/2012; 31:32. · 3.07 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The microenvironment produces important factors that are crucial to prostate cancer (PCa) progression. However, the extent to which the cancer cells stimulate periprostatic adipose tissue (PPAT) to produce these proteins is largely unknown. Our purpose was to determine whether PCa cell-derived factors influence PPAT metabolic activity. Primary cultures of human PPAT samples from PCa patients (adipose tissue organotypic explants and primary stromal vascular fraction, SVF) were stimulated with conditioned medium (CM) collected from prostate carcinoma (PC3) cells. Cultures without CM were used as control. We used multiplex analysis and ELISA for protein quantification, qPCR to determine mitochondrial DNA (mtDNA) copy number and zymography for matrix metalloproteinase activity, in order to evaluate the response of adipose tissue explants and SVFs to PC3 CM. Stimulation of PPAT explants with PCa PC3 CM induced adipokines associated with cancer progression (osteopontin, tumoral necrosis factor alpha and interleukin-6) and reduced the expression of the protective adipokine adiponectin. Notably, osteopontin protein expression was 13-fold upregulated. Matrix metalloproteinase 9 activity and mitochondrial DNA copy number were higher after stimulation with cancer CM. Stromovascular cells from PPAT in culture were not influenced by tumor-derived factors. The modulation of adipokine expression by tumor CM indicates the pervasive extent to which tumor cells command PPAT to produce factors favorable to their aggressiveness.
    Cellular Physiology and Biochemistry 01/2012; 29(1-2):233-40. · 3.42 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The OPCML gene (opioid binding protein/cell adhesion molecule-like), a putative tumour suppressor gene, is frequently inactivated in carcinomas, namely through aberrant promoter methylation. Herein, we aimed to determine whether OPCML altered expression mediated by epigenetic mechanisms was implicated in bladder carcinogenesis and to assess its potential as a bladder cancer epi-marker. OPCML promoter methylation levels from 91 samples of bladder urothelial carcinoma, 25 normal bladder tissues and bladder cancer cell lines were assessed by quantitative methylation-specific polymerase chain reaction, and correlated with OPCML mRNA expression, determined by quantitative reverse-transcription polymerase chain reaction. To prove the epigenetic regulation of OPCML, five bladder cancer cell lines were exposed to 5-aza-2'deoxycytidine (5-aza-dC), a specific DNA methyltransferase inhibitor and trichostatin A (TSA), a histone deacetylase inhibitor. In bladder tumours, the overall frequency of methylation was 60% and methylation levels were significantly higher when compared with normal mucosa (P=0.0001). No correlation was found between methylation levels and clinicopathological parameters. Interestingly, OPCML promoter methylation was associated with worse disease-specific survival (P=0.022) in univariate analysis. Furthermore, a significant inverse correlation between OPCML promoter methylation and mRNA expression levels was found, although a significant re-expression was only achieved when 5-aza-dC and TSA were used simultaneously. The high frequency of OPCML promoter methylation in urothelial carcinomas suggests an important role for this epigenetic alteration in bladder carcinogenesis, highlighting its potential as an epigenetic biomarker for bladder urothelial carcinoma with prognostic significance.
    European journal of cancer (Oxford, England: 1990) 01/2011; 47(7):1106-14. · 4.12 Impact Factor