Thomas M Aune

Vanderbilt University, Нашвилл, Michigan, United States

Are you Thomas M Aune?

Claim your profile

Publications (70)447.42 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Long noncoding RNAs (lncRNAs) regulate an array of biological processes in cells and organ systems. Less is known about their expression and function in lymphocyte lineages. Here we have identified >2000 lncRNAs expressed in human T-cell cultures and those that display a TH lineage-specific pattern of expression and are intragenic or adjacent to TH lineage-specific genes encoding proteins with immunologic functions. One lncRNA cluster selectively expressed by the effector TH2 lineage consists of four alternatively spliced transcripts that regulate the expression of TH2 cytokines, IL-4, IL-5 and IL-13. Genes encoding this lncRNA cluster in humans overlap the RAD50 gene and thus are contiguous with the previously described TH2 locus control region (LCR) in the mouse. Given its genomic synteny with the TH2-LCR, we refer to this lncRNA cluster as TH2-LCR lncRNA.
    Nature Communications 04/2015; 6:6932. DOI:10.1038/ncomms7932 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases. Results We employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs. Conclusions Our results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0629-x) contains supplementary material, which is available to authorized users.
    Genome Biology 03/2015; 16(1). DOI:10.1186/s13059-015-0629-x · 10.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obliterative bronchiolitis is a potentially life-threatening noninfectious pulmonary complication after allogeneic hematopoietic stem cell transplantation and the only pathognomonic manifestation of pulmonary chronic graft-versus-host disease (cGVHD). In the current study, we identified a novel effect of IL-26 on transplant-related obliterative bronchiolitis. Sublethally irradiated NOD/Shi-scidIL2rγ(null) mice transplanted with human umbilical cord blood (HuCB mice) gradually developed clinical signs of graft-versus-host disease (GVHD) such as loss of weight, ruffled fur, and alopecia. Histologically, lung of HuCB mice exhibited obliterative bronchiolitis with increased collagen deposition and predominant infiltration with human IL-26(+)CD26(+)CD4 T cells. Concomitantly, skin manifested fat loss and sclerosis of the reticular dermis in the presence of apoptosis of the basilar keratinocytes, whereas the liver exhibited portal fibrosis and cholestasis. Moreover, although IL-26 is absent from rodents, we showed that IL-26 increased collagen synthesis in fibroblasts and promoted lung fibrosis in a murine GVHD model using IL-26 transgenic mice. In vitro analysis demonstrated a significant increase in IL-26 production by HuCB CD4 T cells following CD26 costimulation, whereas Ig Fc domain fused with the N-terminal of caveolin-1 (Cav-Ig), the ligand for CD26, effectively inhibited production of IL-26. Administration of Cav-Ig before or after onset of GVHD impeded the development of clinical and histologic features of GVHD without interrupting engraftment of donor-derived human cells, with preservation of the graft-versus-leukemia effect. These results therefore provide proof of principle that cGVHD of the lungs is caused in part by IL-26(+)CD26(+)CD4 T cells, and that treatment with Cav-Ig could be beneficial for cGVHD prevention and therapy. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 03/2015; DOI:10.4049/jimmunol.1402785 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective To determine interrelationships between the expression of long intergenic (noncoding) RNA-p21 (lincRNA-p21), NF-κB activity, and responses to methotrexate (MTX) in rheumatoid arthritis (RA) by analyzing patient blood samples and cell culture models.Methods Expression levels of long noncoding RNA and messenger RNA (mRNA) were determined by quantitative reverse transcription-polymerase chain reaction. Western blotting and flow cytometry were used to quantify levels of intracellular proteins. Intracellular NF-κB activity was determined using an NF-κB luciferase reporter plasmid.ResultsPatients with RA expressed reduced basal levels of lincRNA-p21 and increased basal levels of phosphorylated p65 (RelA), a marker of NF-κB activation. Patients with RA who were not treated with MTX expressed lower levels of lincRNA-p21 and higher levels of phosphorylated p65 compared with RA patients treated with low-dose MTX. In cell culture using primary cells and transformed cell lines, MTX induced lincRNA-p21 through a DNA-dependent protein kinase catalytic subunit (DNA PKcs)-dependent mechanism. Deficiencies in the levels of PRKDC mRNA in patients with RA were also corrected by MTX in vivo. Furthermore, MTX reduced NF-κB activity in tumor necrosis factor α-treated cells through a DNA PKcs-dependent mechanism via induction of lincRNA-p21. Finally, we observed that depressed levels of TP53 and lincRNA-p21 increased NF-κB activity in cell lines. Decreased levels of lincRNA-p21 did not alter NFKB1 or RELA transcripts; rather, lincRNA-p21 physically bound to RELA mRNA.Conclusion Our findings support a model whereby depressed levels of lincRNA-p21 in RA contribute to increased NF-κB activity. MTX decreases basal levels of NF-κB activity by increasing lincRNA-p21 levels through a DNA PKcs-dependent mechanism.
    11/2014; 66(11):2947-2957. DOI:10.1002/art.38805
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long noncoding RNAs (lncRNAs), critical regulators of protein-coding genes, are likely to be coexpressed with neighboring protein-coding genes in the genome. How the genome integrates signals to achieve coexpression of lncRNA genes and neighboring protein-coding genes is not well understood. The lncRNA Tmevpg1 (NeST, Ifng-AS1) is critical for Th1-lineage-specific expression of Ifng and is coexpressed with Ifng. In this study, we show that T-bet guides epigenetic remodeling of Tmevpg1 proximal and distal enhancers, leading to recruitment of stimulus-inducible transcription factors, NF-κB and Ets-1, to the locus. Activities of Tmevpg1-specific enhancers and Tmevpg1 transcription are dependent upon NF-κB. Thus, we propose that T-bet stimulates epigenetic remodeling of Tmevpg1-specific enhancers and Ifng-specific enhancers to achieve Th1-lineage-specific expression of Ifng.
    The Journal of Immunology 09/2014; 193(8). DOI:10.4049/jimmunol.1401099 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor κB (NF-κB) is a critical activator of inflammatory processes and MTX is one of the most commonly prescribed DMARDs for treatment of RA. We sought to determine whether MTX inhibited NF-κB activity in RA and in lymphocytes and fibroblast-like synoviocytes (FLSs) and to define underlying mechanisms of action.
    Rheumatology (Oxford, England) 08/2014; DOI:10.1093/rheumatology/keu279 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) are a specialized subset of CD4(+) T cells that maintain self-tolerance by functionally suppressing autoreactive lymphocytes. The Treg compartment is composed of thymus-derived Tregs (tTregs) and peripheral Tregs (pTregs) that are generated in secondary lymphoid organs after exposure to antigen and specific cytokines, such as TGF-β. With regard to this latter lineage, pTregs [and their ex vivo generated counterparts, induced Tregs (iTregs)] offer particular therapeutic potential because these cells can be raised against specific antigens to limit autoimmunity. We now report that transcription factor Krüppel-like factor 2 (KLF2) is necessary for the generation of iTregs but not tTregs. Moreover, drugs that limit KLF2 proteolysis during T-cell activation enhance iTreg development. To the authors' knowledge, this study identifies the first transcription factor to distinguish between i/pTreg and tTreg ontogeny and demonstrates that KLF2 is a therapeutic target for the production of regulatory T cells.
    Proceedings of the National Academy of Sciences 06/2014; 111(26). DOI:10.1073/pnas.1323493111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective We examined the expression of IL-33 as an indicator of an innate immune response in relapsing remitting MS (RRMS) and controls. We proposed a link between the expression of IL-33 and IL-33 regulated genes to histone deacetylase (HDAC) activity and in particular HDAC3, an enzyme that plays a role in the epigenetic regulation of a number genes including those which regulate inflammation.Methods Using TaqMan low density arrays, flow cytometry and ELIZA, expression of IL-33, and family of innate immune response genes which regulate cytokine gene expression was examined in RRMS patients and controls.ResultsIntracellular expression of IL-33 and IL-33 regulated genes are increased in patients with RRMS. In addition, following in vitro culture with TLR agonist lipopolysaccharide (LPS), there is increased induction of both IL-33 and HDAC3 in RRMS patients over that seen in controls. Also, culture of PBMC with IL-33 led to the expression of genes which overlapped with that seen in RRMS patients suggesting that the gene expression signature seen in RRMS is likely to be driven by IL-33 mediated innate immune pathways. Expression of levels of IL-33 but not IL-1 (another gene regulated by TLR agonists) is completely inhibited by Trichostatin A (TSA) establishing a closer regulation of IL-33 but not IL-1 with HDAC.InterpretationThese results demonstrate the over expression of innate immune genes in RRMS and offer a causal link between the epigenetic regulation by HDAC and the induction of IL-33.
    05/2014; 1(5). DOI:10.1002/acn3.47
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methotrexate (MTX) has been for decades a standard treatment in a wide range of conditions, from malignancies to rheumatoid arthritis (RA). Despite this long experience, mechanisms of action of MTX remain incompletely understood. Reported immunologic effects of MTX include induction of increased production of some cytokines, an effect that seems to be at odds with the generally anti-inflammatory effects of this drug in diseases like RA. To further elucidate these immune activities, we examined effects of MTX on the human monocytic cell line U937. The U937 cell line was treated in vitro with pharmacologic range concentrations of MTX and effects on production of interleukin (IL)-1, IL-6 and TNF alpha were measured. Changes in gene expression for IL-1 and IL-6 and specificities in the Jun-N-terminal kinase (JNK) signaling pathway including JNK 1, JNK2, JUN and FOS were also determined. The contribution of NFkB, folate and adenosine pathways to the observed effects were determined by adding appropriate inhibitors to the MTX cultures. MTX mediated a dose-dependent increase in IL-1 and IL-6 in U937 cells, as measured by secreted proteins and levels of gene expression. The increased cytokine expression was inhibited by addition of parthenolide and folinic acid, but not by caffeine and theophylline, suggesting that NFkB and folates, but not adenosine, were involved in mediating the observed effects. When U937 cells were cultured with MTX, upregulated expression of JUN and FOS, but not JNK 1 or 2, also was observed. MTX induces expression of pro-inflammatory cytokines in U937 monocytic cells. These effects might mediate the known toxicities of MTX including pneumonitis, mucositis and decreased bone mineral density.
    Arthritis research & therapy 01/2014; 16(1):R17. DOI:10.1186/ar4444 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chytrid fungus, Batrachochytrium dendrobatidis, causes chytridiomycosis and is a major contributor to global amphibian declines. Although amphibians have robust immune defenses, clearance of this pathogen is impaired. Because inhibition of host immunity is a common survival strategy of pathogenic fungi, we hypothesized that B. dendrobatidis evades clearance by inhibiting immune functions. We found that B. dendrobatidis cells and supernatants impaired lymphocyte proliferation and induced apoptosis; however, fungal recognition and phagocytosis by macrophages and neutrophils was not impaired. Fungal inhibitory factors were resistant to heat, acid, and protease. Their production was absent in zoospores and reduced by nikkomycin Z, suggesting that they may be components of the cell wall. Evasion of host immunity may explain why this pathogen has devastated amphibian populations worldwide.
    Science 10/2013; 342(6156):366-9. DOI:10.1126/science.1243316 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detection of brain lesions disseminated in space and time by magnetic resonance imaging remains a cornerstone for the diagnosis of clinically definite multiple sclerosis. We have sought to determine if gene expression biomarkers could contribute to the clinical diagnosis of multiple sclerosis. We employed expression levels of 30 genes in blood from 199 subjects with multiple sclerosis, 203 subjects with other neurologic disorders, and 114 healthy control subjects to train ratioscore and support vector machine algorithms. Blood samples were obtained from 46 subjects coincident with clinically isolated syndrome who progressed to clinically definite multiple sclerosis determined by conventional methods. Gene expression levels from these subjects were inputted into ratioscore and support vector machine algorithms to determine if these methods also predicted that these subjects would develop multiple sclerosis. Standard calculations of sensitivity and specificity were employed to determine accuracy of these predictions. Our results demonstrate that ratioscore and support vector machine methods employing input gene transcript levels in blood can accurately identify subjects with clinically isolated syndrome that will progress to multiple sclerosis. We conclude these approaches may be useful to predict progression from clinically isolated syndrome to multiple sclerosis.
    10/2013; 3(1):18. DOI:10.1186/2043-9113-3-18
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional activation and repression of genes that are developmentally regulated or exhibit cell-type specific expression patterns is largely achieved by modifying the chromatin template at a gene locus. Complex formation of stable epigenetic histone marks, loss or gain of DNA methylation, alterations in chromosome conformation, and specific utilization of both proximal and distal transcriptional enhancers and repressors all contribute to this process. In addition, long non-coding RNAs are a new species of regulatory RNAs that either positively or negatively regulate transcription of target gene loci. IFN-γ is a pro-inflammatory cytokine with critical functions in both innate and adaptive arms of the immune system. This review focuses on our current understanding of how the chromatin template is modified at the IFNG locus during developmental processes leading to its transcriptional activation and silencing.
    Frontiers in Immunology 05/2013; 4:112. DOI:10.3389/fimmu.2013.00112
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Inflammatory bowel diseases, ulcerative colitis and Crohn's disease are considered to be of autoimmune origin, but the etiology of irritable bowel syndrome remains elusive. Furthermore, classifying patients into irritable bowel syndrome and inflammatory bowel diseases can be difficult without invasive testing and holds important treatment implications. Our aim was to assess the ability of gene expression profiling in blood to differentiate among these subject groups. METHODS: Transcript levels of a total of 45 genes in blood were determined by quantitative real-time polymerase chain reaction (RT-PCR). We applied three separate analytic approaches; one utilized a scoring system derived from combinations of ratios of expression levels of two genes and two different support vector machines. RESULTS: All methods discriminated different subject cohorts, irritable bowel syndrome from control, inflammatory bowel disease from control, irritable bowel syndrome from inflammatory bowel disease, and ulcerative colitis from Crohn's disease, with high degrees of sensitivity and specificity. CONCLUSIONS: These results suggest these approaches may provide clinically useful prediction of the presence of these gastro-intestinal diseases and syndromes.
    11/2012; 2(1):20. DOI:10.1186/2043-9113-2-20
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recombination-activating gene 1 (Rag1) and Rag2 enzymes are required for T cell receptor assembly and thymocyte development. The mechanisms underlying the transcriptional activation and repression of Rag1 and Rag2 are incompletely understood. The zinc-finger protein, Zfp608, represses Rag1 and Rag2 expression when expressed in thymocytes blocking T-cell maturation. Here we show that the related zinc-finger protein, Zfp609, is necessary for Rag1 and Rag2 expression in developing thymocytes. Zfp608 represses Rag1 and Rag2 expression indirectly by repressing the expression of Zfp609. Thus, the balance of Zfp608 and Zfp609 plays a critical role in regulating Rag1 and Rag2 expression, which may manifest itself not only during development of immature thymocytes into mature T cells but also in generation of the T-cell arm of the adaptive immune system, which does not fully develop until after birth.Genes and Immunity advance online publication, 18 October 2012; doi:10.1038/gene.2012.47.
    Genes and immunity 10/2012; 14(1). DOI:10.1038/gene.2012.47 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority of the genome is noncoding and was thought to be nonfunctional. However, it is now appreciated that transcriptional control of protein coding genes resides within these noncoding regions. Thousands of genes encoding long intergenic noncoding RNAs (lincRNAs) have been recently identified throughout the genome, which positively or negatively regulate transcription of neighboring target genes. Both TMEVPG1 and its mouse ortholog encode lincRNAs and are positioned near the IFN-γ gene (IFNG). In this study, we show that transcription of both mouse and human TMEVPG1 genes is Th1 selective and dependent on Stat4 and T-bet, transcription factors that drive the Th1 differentiation program. Ifng expression is partially restored in Stat4-/-Tbx21-/- cells through coexpression of T-bet and Tmevpg1, and Tmevpg1 expression contributes to, but alone is not sufficient to, drive Th1-dependent Ifng expression. Our results suggest that TMEVPG1 belongs to the general class of lincRNAs that positively regulate gene transcription.
    The Journal of Immunology 07/2012; 189(5):2084-8. DOI:10.4049/jimmunol.1200774 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess defects in expression of critical cell cycle checkpoint genes and proteins in patients with rheumatoid arthritis (RA) relative to presence or absence of methotrexate (MTX) treatment, and to investigate the role of JNK in induction of these genes by MTX. Flow cytometric analysis was used to quantify changes in levels of intracellular proteins, measure reactive oxygen species (ROS), and determine apoptosis in different lymphoid populations. Quantitative reverse transcription-polymerase chain reaction was used to identify changes in cell cycle checkpoint target genes. RA patients expressed reduced baseline levels of MAPK9, TP53, CDKN1A, CDKN1B, CHEK2, and RANGAP1 messenger RNA (mRNA) and JNK total protein. The reduction in expression of mRNA for MAPK9, TP53, CDKN1A, and CDKN1B was greater in patients not receiving MTX than in those receiving low-dose MTX, with no difference in expression levels of CHEK2 and RANGAP1 mRNA between MTX-treated and non-MTX-treated patients. Further, JNK levels were inversely correlated with C-reactive protein levels in RA patients. In tissue culture, MTX induced expression of both p53 and p21 by JNK-2- and JNK-1-dependent mechanisms, respectively, while CHEK2 and RANGAP1 were not induced by MTX. MTX also induced ROS production, JNK activation, and sensitivity to apoptosis in activated T cells. Supplementation with tetrahydrobiopterin blocked these MTX-mediated effects. Our findings support the notion that MTX restores some, but not all, of the proteins contributing to cell cycle checkpoint deficiencies in RA T cells, via a JNK-dependent pathway.
    Arthritis & Rheumatology 06/2012; 64(6):1780-9. DOI:10.1002/art.34342 · 7.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Certain groups of physically linked genes remain linked over long periods of evolutionary time. The general view is that such evolutionary conservation confers 'fitness' to the species. Why gene order confers 'fitness' to the species is incompletely understood. For example, linkage of IL26 and IFNG is preserved over evolutionary time yet Th17 lineages express IL26 and Th1 lineages express IFNG. We considered the hypothesis that distal enhancer elements may be shared between adjacent genes, which would require linkage be maintained in evolution. We test this hypothesis using a bacterial artificial chromosome transgenic model with deletions of specific conserved non-coding sequences. We identify one enhancer element uniquely required for IL26 expression but not for IFNG expression. We identify a second enhancer element positioned between IL26 and IFNG required for both IL26 and IFNG expression. One function of this enhancer is to facilitate recruitment of RNA polymerase II to promoters of both genes. Thus, sharing of distal enhancers between adjacent genes may contribute to evolutionary preservation of gene order.
    Genes and immunity 05/2012; 13(6):481-8. DOI:10.1038/gene.2012.22 · 3.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have identified multiple conserved noncoding sequences (CNS) at the mouse Ifng locus sufficient for enhancer activity in cell-based assays. These studies do not directly address biology of the human IFNG locus in a genomic setting. IFNG enhancers may be functionally redundant or each may be functionally unique. We test the hypothesis that each IFNG enhancer has a unique necessary function using a bacterial artificial chromosome transgenic model. We find that CNS-30, CNS-4, and CNS+20 are required at distinct stages of Th1 differentiation, whereas CNS-16 has a repressive role in Th1 and Th2 cells. CNS+20 is required for IFN-γ expression by memory Th1 cells and NKT cells. CNS-4 is required for IFN-γ expression by effector Th1 cells. In contrast, CNS-16, CNS-4, and CNS+20 are each partially required for human IFN-γ expression by NK cells. Thus, IFNG CNS enhancers have redundant necessary functions in NK cells but unique necessary functions in Th cells. These results also demonstrate that distinct CNSs are required to transcribe IFNG at each stage of the Th1 differentiation pathway.
    The Journal of Immunology 02/2012; 188(4):1726-33. DOI:10.4049/jimmunol.1102879 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of biomarkers contributing to disease diagnosis, classification or prognosis could be of considerable utility. For example, primary methods to diagnose multiple sclerosis (MS) include magnetic resonance imaging and detection of immunological abnormalities in cerebrospinal fluid. We determined whether gene-expression differences in blood discriminated MS subjects from comparator groups, and identified panels of ratios that performed with varying degrees of accuracy depending upon complexity of comparator groups. High levels of overall accuracy were achieved by comparing MS with homogeneous comparator groups. Overall accuracy was compromised when MS was compared with a heterogeneous comparator group. Results, validated in independent cohorts, indicate that gene-expression differences in blood accurately exclude or include a diagnosis of MS and suggest that these approaches may provide clinically useful prediction of MS.
    Genes and immunity 09/2011; 13(2):146-54. DOI:10.1038/gene.2011.66 · 3.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low-dose methotrexate (MTX) is an effective therapy for rheumatoid arthritis (RA), yet its mechanism of action is incompletely understood. The aim of this study was to explore the induction of apoptosis by MTX. Flow cytometry was performed to assess changes in the levels of intracellular proteins, reactive oxygen species (ROS), and apoptosis. Quantitative polymerase chain reaction was performed to assess changes in the transcript levels of select target genes in response to MTX. MTX did not directly induce apoptosis but rather "primed" cells for markedly increased sensitivity to apoptosis via either mitochondrial or death receptor pathways, by a JNK-dependent mechanism. Increased sensitivity to apoptosis was mediated, at least in part, by MTX-dependent production of ROS, JNK activation, and JNK-dependent induction of genes whose protein products promote apoptosis. Supplementation with tetrahydrobiopterin blocked these MTX-induced effects. Patients with RA who were receiving low-dose MTX therapy expressed elevated levels of the JNK target gene, jun. Our results support a model whereby MTX inhibits reduction of dihydrobiopterin to tetrahydrobiopterin, resulting in increased production of ROS, increased JNK activity, and increased sensitivity to apoptosis. The finding of increased jun levels in patients with RA receiving low-dose MTX supports the notion that this pathway is activated by MTX in vivo and may contribute to the efficacy of MTX in inflammatory disease.
    Arthritis & Rheumatology 09/2011; 63(9):2606-16. DOI:10.1002/art.30457 · 7.87 Impact Factor

Publication Stats

1k Citations
447.42 Total Impact Points

Institutions

  • 1997–2015
    • Vanderbilt University
      • • Department of Medicine
      • • Division of Rheumatology and Immunology
      • • Department of Pathology, Microbiology and Immunology
      Нашвилл, Michigan, United States
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 2010
    • Harvard University
      • Department of Immunology and Infectious Diseases
      Cambridge, Massachusetts, United States