Torsten Schöneberg

University of Leipzig, Leipzig, Saxony, Germany

Are you Torsten Schöneberg?

Claim your profile

Publications (132)704.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: GPR34 is a Gi/o protein-coupled receptor (GPCR) of the nucleotide receptor P2Y12-like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34-deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34-deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis. GLIA 2014
    Glia 08/2014; · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whereas the three-dimensional structure and the structural basis of the allosteric regulation of prokaryotic 6-phosphofructokinases (Pfks) have been studied in great detail, knowledge of the molecular basis of the allosteric behaviour of the far more complex mammalian Pfks is still very limited. The human muscle isozyme was expressed heterologously in yeast cells and purified using a five-step purification protocol. Protein crystals suitable for diffraction experiments were obtained by the vapour-diffusion method. The crystals belonged to space group P6222 and diffracted to 6.0 Å resolution. The 3.2 Å resolution structure of rabbit muscle Pfk (rmPfk) was placed into the asymmetric unit and optimized by rigid-body and group B-factor refinement. Interestingly, the tetrameric enzyme dissociated into a dimer, similar to the situation observed in the structure of rmPfk.
    Acta crystallographica. Section F, Structural biology communications. 05/2014; 70(Pt 5):578-82.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inter-individual differences in many behaviors are partly due to genetic differences, but the identification of the genes and variants that influence behavior remains challenging. Here, we studied an F2 intercross of two outbred lines of rats selected for tame and aggressive behavior towards humans for more than 64 generations. By using a mapping approach that is able to identify genetic loci segregating within the lines, we identified four times more loci influencing tameness and aggression than by an approach that assumes fixation of causative alleles, suggesting that many causative loci were not driven to fixation by the selection. We used RNA sequencing in 150 F2 animals to identify hundreds of loci that influence brain gene expression. Several of these loci colocalize with tameness loci and may reflect the same genetic variants. Through analyses of correlations between allele effects on behavior and gene expression, differential expression between the tame and aggressive rat selection lines, and correlations between gene expression and tameness in F2 animals, we identify the genes Gltscr2, Lgi4, Zfp40 and Slc17a7 as candidate contributors to the strikingly different behavior of the tame and aggressive animals.
    Genetics. 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.
    PLoS ONE 01/2014; 9(3):e92605. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The myelin sheath surrounding axons ensures that nerve impulses travel quickly and efficiently, allowing for the proper function of the vertebrate nervous system. We previously showed that the adhesion G-protein-coupled receptor (aGPCR) Gpr126 is essential for peripheral nervous system myelination, although the molecular mechanisms by which Gpr126 functions were incompletely understood. aGPCRs are a significantly understudied protein class, and it was unknown whether Gpr126 couples to G-proteins. Here, we analyze Dhh(Cre);Gpr126(fl/fl) conditional mutants, and show that Gpr126 functions in Schwann cells (SCs) for radial sorting of axons and myelination. Furthermore, we demonstrate that elevation of cAMP levels or protein kinase A activation suppresses myelin defects in Gpr126 mouse mutants and that cAMP levels are reduced in conditional Gpr126 mutant peripheral nerve. Finally, we show that GPR126 directly increases cAMP by coupling to heterotrimeric G-proteins. Together, these data support a model in which Gpr126 functions in SCs for proper development and myelination and provide evidence that these functions are mediated via G-protein-signaling pathways.
    Journal of Neuroscience 11/2013; 33(46):17976-85. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.
    BMC Genomics 05/2013; 14(1):363. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Although crystal structures of prokaryotic 6-phosphofructokinase, a key enzyme of glycolysis, are available since almost 25 years, structural information about the more complex and highly regulated eukaryotic enzymes were lacking until now. This review provides an overview of the current knowledge of eukaryotic 6-phosphofructokinase based on recent crystal structures, kinetic analyses and site-directed mutagenesis data with special focus on the molecular architecture and the structural basis of the allosteric regulation.
    Biological Chemistry 05/2013; · 2.68 Impact Factor
  • Ines Liebscher, Torsten Schöneberg, Simone Prömel
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Adhesion G protein-coupled receptors (aGPCR) form the second largest class of GPCR. They are phylogenetically old and have been highly conserved during evolution. Mutations in representatives of this class are associated with severe diseases such as Usher Syndrome, a combined congenital deaf-blindness, or bifrontal parietal polymicrogyria. The main characteristics of aGPCR are their enormous size and the complexity of their N termini. They contain a highly conserved GPCR proteolytic site (GPS) and several functional domains that have been implicated in cell-cell and cell-matrix interactions. Adhesion GPCR have been proposed to serve a dual function as adhesion molecules and as classical receptors. However, until recently there was no proof that aGPCR indeed couple to G proteins or even function as classical receptors. In this review, we have summarized and discussed recent evidence that aGPCR present many functional features of classical GPCR including multiple G protein-coupling abilities, G protein independent signaling and oligomerization but also specific signaling properties only found in aGPCR.
    Biological Chemistry 03/2013; · 2.68 Impact Factor
  • Source
    Antje Brüser, Jürgen Kirchberger, Torsten Schöneberg
    Biochemical and Biophysical Research Communications 02/2013; 431(2):367. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variation in the melanocortin-1 receptor (Mc1r) is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon (Columbalivia) is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met). In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species.
    PLoS ONE 01/2013; 8(8):e74475. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1β during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration triggers inflammasome assembly and Caspase-1 activation. We identified necrotic cells as one source for excess extracellular calcium triggering this activation. In vivo, increased calcium concentrations can amplify the inflammatory response in the mouse model of carrageenan-induced footpad swelling, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation.
    Nature Communications 12/2012; 3:1329. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Variants in the melanocortin-4 receptor (MC4R) gene are the most frequent cause of monogenic obesity. The relevance of MC4R variations with respect to clinical phenotype and biochemical function remains controversial. Methods: We sequenced the MC4R gene in 510 overweight/obese children. The clinical phenotype was assessed in a case-control setting matched for age, gender, puberty and body mass index. Identified MC4R variants were functionally characterized in vitro. Results: The frequency of MC4R variants was 5.3%, with functionally relevant mutations (D(90)N, V(103)I/S(127)L, R(165)W, G(181)D) occurring in 1.2% (confidence interval 0.26-2.15) of our sample. 4.1% were carriers of variants (Y(35)Y, V(103)I, T(112)M, M(200)V, I(251)L) with preserved receptor function in vitro. We did not detect large heterozygous deletions by multiple-ligand probe amplification assay. There were no differences in anthropometric or metabolic parameters between children with loss-of-function mutations and noncarriers. Carriers of the V(103)I or I(251)L variant had higher high-density lipoprotein cholesterol and HbA1c levels than matched noncarriers of MC4R variants. Conclusions: In our data set of childhood obesity in central Germany, we identified functionally relevant mutations in the MC4R gene in only 1.2% of the children. There were no major significant phenotypic differences between obese children with and without MC4R mutations. Hence, the diagnosis of genetically caused obesity due to MC4R mutation should be made with caution.
    Hormone Research in Paediatrics 11/2012; · 1.55 Impact Factor
  • Claudia Stäubert, Jens Bohnekamp, Torsten Schöneberg
    [Show abstract] [Hide abstract]
    ABSTRACT: AIMS: The trace amine-associated receptor (Taar) family displays high species- and subtype-specific pharmacology. Several trace amines such as β-phenylethylamine (β-PEA), p-tyramine and tryptamine are agonists at TA(1) but poorly activate rat and mouse Taar4. PRINCIPAL RESULTS: Using rat TA(1) and Taar4 chimera we identified determinants in transmembrane helices 3 and 6 which, when replaced by the corresponding portion of rat TA(1) , can rescue cell surface expression of rat Taar4. When expressed at the cell surface, rat Taar4 pharmacology was very similar to that of TA(1) and coupled to the Gα(s) -protein/adenylyl cyclase pathway. Our data suggest that binding pockets of Taar for surrogate agonists overlap between paralogs. CONCLUSIONS: This implicates that the repertoire of Taar ensures functional redundancy, tissue- and cell-specific expression and/or different downstream signalling rather than different agonist specificity.
    British Journal of Pharmacology 10/2012; · 5.07 Impact Factor
  • Antje Brüser, Jürgen Kirchberger, Torsten Schöneberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Tarui disease is a glycogen storage disease (GSD VII) and characterized by exercise intolerance with muscle weakness and cramping, mild myopathy, myoglobinuria and compensated hemolysis. It is caused by mutations in the muscle 6-phosphofructokinase (Pfk). Pfk is an oligomeric, allosteric enzyme which catalyzes one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk displayed several allosteric adenine nucleotide binding sites. Functional studies revealed a reciprocal linkage between the activating and inhibitory allosteric binding sites. Herein, we showed that Asp(543)Ala, a naturally occurring disease-causing mutation in the activating binding site, causes an increased efficacy of ATP at the inhibitory allosteric binding site. The reciprocal linkage between the activating and inhibitory binding sites leads to reduced enzyme activity and therefore to the clinical phenotype. Pharmacological blockage of the inhibitory allosteric binding site or highly efficient ligands for the activating allosteric binding site may be of therapeutic relevance for patients with Tarui disease.
    Biochemical and Biophysical Research Communications 09/2012; 427(1):133-7. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans. We show that the GPCR proteolytic site (GPS) motif, the molecular hallmark feature of the entire aGPCR class, is essential for LAT-1 signaling serving in two different activity modes of the receptor. Surprisingly, neither mode requires cleavage but presence of the GPS, which relays interactions with at least two different partners. Our work thus uncovers the versatile nature of aGPCR activity in molecular detail and places the GPS motif in a central position for diverse protein-protein interactions.
    Cell Reports 08/2012; 2(2):321-31. · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Adhesion G protein-coupled receptors (aGPCR) constitute a structurally and functionally diverse class of seven-transmembrane receptor proteins. Although for some of the members important roles in immunology, neurology, as well as developmental biology have been suggested, most receptors have been poorly characterized. Results: We have studied evolution, expression, and function of an entire receptor group containing four uncharacterized aGPCR: Gpr110, Gpr111, Gpr115, and Gpr116. We show that the genomic loci of these four receptors are clustered tightly together in mouse and human genomes and that this cluster likely derives from a single common ancestor gene. Using transcriptional profiling on wild-type and knockout/LacZ reporter knockin mice strains, we have obtained detailed expression maps that show ubiquitous expression of Gpr116, co-expression of Gpr111 and Gpr115 in developing skin, and expression of Gpr110 in adult kidney. Loss of Gpr110, Gpr111, or Gpr115 function did not result in detectable defects, indicating that genes of this aGPCR group might function redundantly. Conclusions: The aGPCR cluster Gpr110, Gpr111, Gpr115, and Gpr116 developed from one common ancestor in vertebrates. Expression suggests a role in epithelia, and one can speculate about a possible redundant function of GPR111 and GPR115. Developmental Dynamics 241:1591-1602, 2012. © 2012 Wiley Periodicals, Inc.
    Developmental Dynamics 07/2012; 241(10):1591-602. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluating the functional relevance of naturally occurring gene variants usually requires experimental testing or is even impossible because of the lack of appropriate functional assays. Here we have analyzed whether comparative sequence data from orthologs are suitable to predict the functional relevance of mutations in a model protein, a G-protein-coupled receptor for ADP (P2Y(12)). The functional effect of every possible substitution at each amino acid position within a portion of P2Y(12) (1254 mutants) was individually determined. Sequence analysis of >70 P2Y(12) vertebrate orthologs revealed that this amino acid variability ensuring proper receptor function in vivo highly correlates (>90%) with the in vitro experimental data. Therefore, ortholog sequence data are helpful to predict the functional relevance of individual positions and mutations for P2Y(12). It is likely that similar conclusions may be extended for other GPCRs and conserved proteins as well.
    The FASEB Journal 05/2012; 26(8):3273-81. · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution).
    Journal of Biological Chemistry 04/2012; 287(21):17546-53. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities.
    Biochemical Journal 02/2012; 443(3):841-50. · 4.65 Impact Factor
  • Jens Bohnekamp, Torsten Schöneberg
    [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion G protein-coupled receptors (GPCR), with their very large and complex N termini, are thought to participate in cell-cell and cell-matrix interactions and appear to be highly relevant in several developmental processes. Their intracellular signaling is still poorly understood. Here we demonstrate that GPR133, a member of the adhesion GPCR subfamily, activates the G(s) protein/adenylyl cyclase pathway. The presence of the N terminus and the cleavage at the GPCR proteolysis site are not required for G protein signaling. G(s) protein coupling was verified by Gα(s) knockdown with siRNA, overexpression of Gα(s), co-expression of the chimeric Gq(s4) protein that routes GPR133 activity to the phospholipase C/inositol phosphate pathway, and missense mutation within the transmembrane domain that abolished receptor activity without changing cell surface expression. It is likely that not only GPR133 but also other adhesion GPCR signal via classical receptor/G protein-interaction.
    Journal of Biological Chemistry 12/2011; 286(49):41912-6. · 4.65 Impact Factor

Publication Stats

3k Citations
704.56 Total Impact Points


  • 2004–2014
    • University of Leipzig
      • Institute of Biochemistry
      Leipzig, Saxony, Germany
  • 2011
    • Charité Universitätsmedizin Berlin
      • Institute of Experimental Pediatric Endocrinology
      Berlin, Land Berlin, Germany
  • 2010
    • Harvard University
      • Department of Organismic and Evolutionary Biology
      Cambridge, MA, United States
    • University of Idaho
      • Department of Biological Sciences
      Moscow, ID, United States
    • The University of York
      • Department of Biology
      York, ENG, United Kingdom
  • 2008
    • University of California, San Diego
      • Division of Biological Sciences
      San Diego, CA, United States
  • 2007
    • University of Barcelona
      • Departament de Biologia Animal
      Barcelona, Catalonia, Spain
  • 2003
    • CardioVasculäres Centrum Frankfurt
      Frankfurt, Hesse, Germany
  • 1996–2003
    • Freie Universität Berlin
      • Institute of Pharmacology and Toxicology
      Berlin, Land Berlin, Germany
  • 1997–2001
    • The National Institute of Diabetes and Digestive and Kidney Diseases
      Maryland, United States
  • 1999
    • National Institutes of Health
      • Laboratory of Bioorganic Chemistry (LBC)
      Bethesda, MD, United States
  • 1994–1999
    • Humboldt-Universität zu Berlin
      Berlín, Berlin, Germany
  • 1995
    • Friedrich-Schiller-University Jena
      Jena, Thuringia, Germany