R D Goldman

Northwestern University, Evanston, Illinois, United States

Are you R D Goldman?

Claim your profile

Publications (221)1661.92 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear lamins form the major structural elements comprising the nuclear lamina. While loss of nuclear structural integrity has been implicated as a key factor in the lamin A gene mutations causing laminopathies, the normal regulation of lamin A/C (LA/C) assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 21 prime interphase phosphorylation sites, with 8 high turnover sites. The roles of these latter sites were examined by site-directed mutagenesis, followed by detailed microscopic analysis, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and nuclear extraction techniques. Results reveal three phosphorylation regions, each with dominant sites, together controlling LA/C structure and dynamics. Interestingly, two of these interphase sites are hyperphosphorylated in mitotic cells and one is within the sequence missing in progerin of the Hutchinson Gilford Progeria Syndrome. A model is presented where different phosphorylation combinations will yield markedly different effects on the assembly, subunit turnover, and mobility of LA/C between and within the lamina, the nucleoplasm, and the cytoplasm of interphase cells.
    Journal of Cell Science 04/2014; · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it remains unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes (NPC). By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.
    Molecular biology of the cell 02/2014; · 5.98 Impact Factor
  • Takeshi Shimi, Robert D Goldman
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.
    Advances in experimental medicine and biology 01/2014; 773:415-30. · 1.83 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significant efforts have addressed the role of vimentin intermediate filaments (VIF) in cell motility, shape, adhesion and their connections to microfilaments (MF) and microtubules (MT). The present work uses micropatterned substrates to control the shapes of mouse fibroblasts and demonstrates that the cytoskeletal elements are dependent on each other and that unlike MF, VIF are globally controlled. For example, both square and circle shaped cells have a similar VIF distribution while MF distributions in these two shapes are quite different and depend on the curvature of the shape. Furthermore, in asymmetric and polarized shaped cells VIF avoid the sharp edges where MF are highly localized. Experiments with vimentin null mouse embryonic fibroblasts (MEFs) adherent to polarized (teardrop) and un-polarized (dumbbell) patterns show that the absence of VIF alters microtubule organization and perturbs cell polarity. The results of this study also demonstrate the utility of patterned substrates for quantitative studies of cytoskeleton organization in adherent cells.
    Biomaterials 11/2013; · 7.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanical properties of a cell determine many aspects of its behavior, and these mechanics are largely determined by the cytoskeleton. Although the contribution of actin filaments and microtubules to the mechanics of cells has been investigated in great detail, relatively little is known about the contribution of the third major cytoskeletal component, intermediate filaments (IFs). To determine the role of vimentin IF (VIF) in modulating intracellular and cortical mechanics, we carried out studies using mouse embryonic fibroblasts (mEFs) derived from wild-type or vimentin(-/-) mice. The VIFs contribute little to cortical stiffness but are critical for regulating intracellular mechanics. Active microrheology measurements using optical tweezers in living cells reveal that the presence of VIFs doubles the value of the cytoplasmic shear modulus to ∼10 Pa. The higher levels of cytoplasmic stiffness appear to stabilize organelles in the cell, as measured by tracking endogenous vesicle movement. These studies show that VIFs both increase the mechanical integrity of cells and localize intracellular components.
    Biophysical Journal 10/2013; 105(7):1562-1568. · 3.67 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients' dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan-/- mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease.
    Journal of Clinical Investigation 04/2013; · 12.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lamin A and the B-type lamins, lamin B1 and lamin B2, are translated as pre-proteins that are modified at a carboxyl terminal CAAX motif by farnesylation, proteolysis and carboxymethylation. Lamin A is further processed by proteolysis to remove the farnesyl, but B-type lamins remain permanently farnesylated. Two childhood diseases, Hutchinson Gilford Progeria Syndrome and restrictive dermopathy are caused by defects in the processing of lamin A, resulting in permanent farnesylation of the protein. Farnesyltransferase inhibitors, originally developed to target oncogenic Ras, have recently been used in clinical trials to treat children with Hutchinson Gilford Progeria Syndrome. Lamin B1 and lamin B2 play important roles in cell proliferation and organ development, but little is known about the role of farnesylation in their functions. Treating normal human fibroblasts with farnesyltransferase inhibitors causes the accumulation of unprocessed lamin B2 and lamin A and a decrease in mature lamin B1. Normally, lamins are concentrated at the nuclear envelope/lamina, but when farnesylation is inhibited, the peripheral localization of lamin B2 decreases as its nucleoplasmic levels increase. Unprocessed prelamin A distributes into both the nuclear envelope/lamina and nucleoplasm. Farnesyltransferase inhibitors also cause a rapid cell cycle arrest leading to cellular senescence. This study suggests that the long-term inhibition of protein farnesylation could have unforeseen consequences on nuclear functions.
    Nucleus (Austin, Texas) 03/2013; 4(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much of the structural stability of the nucleus comes from meshworks of intermediate filament proteins known as lamins forming the inner layer of the nuclear envelope called the nuclear lamina. These lamin meshworks additionally play a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford Progeria Syndrome, and often include protruding structures termed nuclear blebs. These nuclear blebs are thought to be related to pathological gene expression; however, little is known about how and why blebs form. We have developed a minimal continuum elastic model of a lamin meshwork that we use to investigate which aspects of the meshwork could be responsible for bleb formation. Mammalian lamin meshworks consist of two types of lamin proteins, A type and B type, and it has been reported that nuclear blebs are enriched in A-type lamins. Our model treats each lamin type separately and thus, can assign them different properties. Nuclear blebs have been reported to be located in regions where the fibers in the lamin meshwork have a greater separation, and we find that this greater separation of fibers is an essential characteristic for generating nuclear blebs. The model produces structures with comparable morphologies and distributions of lamin types as real pathological nuclei. Thus, preventing this opening of the meshwork could be a route to prevent bleb formation, which could be used as a potential therapy for the pathologies associated with nuclear blebs.
    Proceedings of the National Academy of Sciences 02/2013; 110(9):3248-53. · 9.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear lamins play important roles in the structural organization and function of the metazoan cell nucleus. Recent studies on B-type lamins identified a requirement for lamin B1 (LB1) in the regulation of cell proliferation in normal diploid cells. In order to further investigate the function of LB1 in proliferation, we disrupted its normal expression in U-2 OS human osteosarcoma and other tumor cell lines. Silencing LB1 expression induced G1 cell cycle arrest without significant apoptosis. The arrested cells are unable to mount a timely and effective response to DNA damage induced by UV irradiation. Several proteins involved in the detection and repair of UV damage by the nucleotide excision repair (NER) pathway are down-regulated in LB1 silenced cells including DDB1, CSB and PCNA. We propose that LB1 regulates the DNA damage response to UV irradiation by modulating the expression of specific genes and activating persistent DNA damage signaling. Our findings are relevant to understanding the relationship between the loss of LB1 expression, DNA damage signaling, and replicative senescence.
    PLoS ONE 01/2013; 8(7):e69169. · 3.73 Impact Factor
  • Source
    Puneet Opal, Robert D Goldman
    [Show abstract] [Hide abstract]
    ABSTRACT: Giant axonal neuropathy (GAN)(1) is a rare autosomal recessive neurological disorder caused by mutations in the GAN gene that encodes gigaxonin, a member of the BTB/Kelch family of E3 ligase adaptor proteins.(1) This disease is characterized by the aggregation of Intermediate Filaments (IF)-cytoskeletal elements that play important roles in cell physiology including the regulation of cell shape, motility, mechanics and intra-cellular signaling. Although a range of cell types are affected in GAN, neurons display the most severe pathology, with neuronal intermediate filament accumulation and aggregation; this in turn causes axonal swellings or "giant axons." A mechanistic understanding of GAN IF pathology has eluded researchers for many years. In a recent study(1) we demonstrate that the normal function of gigaxonin is to regulate the degradation of IF proteins via the proteasome. Our findings present the first direct link between GAN mutations and IF pathology; moreover, given the importance of IF aggregations in a wide range of disease conditions, our findings could have wider ramifications.
    Rare diseases (Austin, Tex.). 01/2013; 1:e25378.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that premature cellular senescence and normal organ development and function depend on the type V intermediate filament proteins, the lamins, which are major structural proteins of the nucleus. This review presents an up-to-date summary of the literature describing new findings on lamin functions in various cellular processes and emphasizes the relationship between the lamins and devastating diseases ranging from premature aging to cancer. Recent insights into the structure and function of the A- and B- type lamins in normal cells and their dysfunctions in diseased cells are providing novel targets for the development of new diagnostic procedures and disease intervention. We summarize these recent findings, focusing on data from mice and humans, and highlight the expanding knowledge of these proteins in both healthy and diseased cells.
    Trends in Genetics 07/2012; 28(9):464-71. · 9.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Withaferin A (WFA) is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF) into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.
    PLoS ONE 01/2012; 7(6):e39065. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies of the nuclear envelope (NE) have emphasized its role in linking the nuclear and cytoplasmic compartments of mammalian cells. The inner face of the NE is bound to chromatin and this interaction is involved in regulating DNA replication and transcription. The outer face of the NE binds to different components of the cytoskeleton, and these interactions are involved in nuclear positioning. Many disease causing mutations in genes encoding NE proteins cause significant changes in nuclear architecture and cytoskeletal interactions with the NE. These mutations are also providing important new insights into nuclear-cytoplasmic interactions.
    Current opinion in cell biology 12/2011; 24(1):71-8. · 14.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear lamin B1 (LB1) is a major structural component of the nucleus that appears to be involved in the regulation of many nuclear functions. The results of this study demonstrate that LB1 expression in WI-38 cells decreases during cellular senescence. Premature senescence induced by oncogenic Ras also decreases LB1 expression through a retinoblastoma protein (pRb)-dependent mechanism. Silencing the expression of LB1 slows cell proliferation and induces premature senescence in WI-38 cells. The effects of LB1 silencing on proliferation require the activation of p53, but not pRb. However, the induction of premature senescence requires both p53 and pRb. The proliferation defects induced by silencing LB1 are accompanied by a p53-dependent reduction in mitochondrial reactive oxygen species (ROS), which can be rescued by growth under hypoxic conditions. In contrast to the effects of LB1 silencing, overexpression of LB1 increases the proliferation rate and delays the onset of senescence of WI-38 cells. This overexpression eventually leads to cell cycle arrest at the G1/S boundary. These results demonstrate the importance of LB1 in regulating the proliferation and senescence of human diploid cells through a ROS signaling pathway.
    Genes & development 12/2011; 25(24):2579-93. · 12.08 Impact Factor
  • Source
    Stephen A Adam, Robert D Goldman
    Advances in enzyme regulation 11/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although intermediate filaments are one of three major cytoskeletal systems of vertebrate cells, they remain the least understood with respect to their structure and function. This is due in part to the fact that they are encoded by a large gene family which is developmentally regulated in a cell and tissue type specific fashion. This article is in honor of Ueli Aebi. It highlights the studies on IF that have been carried out by our laboratory for more than 40 years. Many of our advances in understanding IF are based on conversations with Ueli which have taken place during adventurous and sometimes dangerous hiking and biking trips throughout the world.
    Journal of Structural Biology 11/2011; 177(1):14-23. · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The canonical gate of viruses and viral genomes into the nucleus in non-dividing cells is the nuclear pore, embedded within the nuclear envelope. However, we found that for SV40, the nuclear envelope poses a major hurdle to infection: FISH analysis revealed that the majority of viral DNA remains trapped in the ER; silencing of Lamin A/C rendered the cells more susceptible to infection; and proliferating cells are more susceptible to infection than quiescent cells. Surprisingly, we observed that following SV40 infection the nuclear envelope, including lamins A/C, B1, B2 and the nuclear pore complex, was dramatically deformed, as seen by immunohistochemistry. The infection induced fluctuations in the level of lamin A/C, dephosphorylation of an unknown epitope and leakage to the cytoplasm just prior to and during nuclear entry. Deformations were transient, and the spherical structure of the nuclear envelope was restored subsequent to nuclear entry. Nuclear envelope deformations and lamin A/C dephosphorylation depended on caspase-6 cleavage of lamin A/C. Notably, we have previously reported that inhibition of caspase-6 abolishes SV40 infection. Taken together the results suggest that alterations of the nuclear lamina, induced by the infecting virus, are involved in the nuclear entry of the SV40 genome. We propose that SV40 utilize this unique, previously unknown mechanism for direct trafficking of its genome from the ER to the nucleus. As SV40 serves as a paradigm for the pathogenic human BK, JC and Merkel cell polyomavirus, this study suggests nuclear entry as a novel drug target for these infections.
    Nucleus (Austin, Texas) 07/2011; 2(4):320-30.

Publication Stats

12k Citations
1,661.92 Total Impact Points


  • 1986–2012
    • Northwestern University
      • • Department of Urology
      • • Feinberg School of Medicine
      • • Department of Cell and Molecular Biology
      • • Division of Pulmonary and Critical Care
      Evanston, Illinois, United States
  • 2009
    • Harvard Medical School
      • Department of Microbiology and Immunobiology
      Boston, MA, United States
    • Åbo Akademi University
      • Department of Biology
      Turku, Western Finland, Finland
  • 2004
    • French National Centre for Scientific Research
      Lutetia Parisorum, Île-de-France, France
    • University of Turku
      • Department of Biology
      Turku, Western Finland, Finland
  • 1985–2001
    • University of Illinois at Chicago
      • Department of Anatomy and Cell Biology (Chicago)
      Chicago, Illinois, United States
  • 1999
    • National Institutes of Health
      • Laboratory of Sensory Biology
      Bethesda, MD, United States
  • 1996
    • SUNY Ulster
      Kingston, New York, United States
  • 1995–1996
    • Johns Hopkins Medicine
      Baltimore, Maryland, United States
  • 1991
    • National Cancer Center, Japan
      • National Cancer Center Research Institute
      Edo, Tōkyō, Japan
  • 1981
    • Carnegie Mellon University
      • Department of Biological Sciences
      Pittsburgh, Pennsylvania, United States
  • 1976
    • Cold Spring Harbor Laboratory
      Cold Spring Harbor, New York, United States
  • 1970–1974
    • Case Western Reserve University
      • Department of Biology
      Cleveland, Ohio, United States