Robert C Rickert

Sanford-Burnham Medical Research Institute, La Jolla, California, United States

Are you Robert C Rickert?

Claim your profile

Publications (60)605.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: BAFF, an activator of the noncanonical NFκB pathway, provides critical survival signals during B cell maturation and contributes to B cell proliferation. We found that the NFκB family member RelB is required ex vivo for B cell maturation, but cRel is required for proliferation. Combined molecular network modeling and experimentation revealed Nfkb2 p100 as a pathway switch; at moderate p100 synthesis rates in maturing B cells, BAFF fully utilizes p100 to generate the RelB:p52 dimer, whereas at high synthesis rates, p100 assembles into multimeric IκBsome complexes, which BAFF neutralizes in order to potentiate cRel activity and B cell expansion. Indeed, moderation of p100 expression or disruption of IκBsome assembly circumvented the BAFF requirement for full B cell expansion. Our studies emphasize the importance of p100 in determining distinct NFκB network states during B cell biology, which causes BAFF to have context-dependent functional consequences. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell reports. 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Successful B cell differentiation and prevention of cell transformation depends on balanced and fine-tuned activation of cellular signaling pathways. The phosphatidyl inositol-3 kinase (PI3K) signaling pathway has emerged as a major regulator of B lymphocyte homeostasis and function. Phosphoinositide-dependent protein kinase-1 (PDK1) is the pivotal node in the PI3K pathway, regulating the stability and activity of downstream AGC kinases (including Akt, RSK, S6K, SGK, and PKC). Although the importance of PI3K activity in B cell differentiation is well documented, the role of PDK1 and other downstream effectors is underexplored. Here we used inducible and stage-specific gene targeting approaches to elucidate the role of PDK1 in early and peripheral B cell differentiation. PDK1 ablation enhanced cell cycle entry and apoptosis of IL-7-dependent pro-B cells, blocking Ig synthesis and B cell maturation. PDK1 also was essential for the survival and activation of peripheral B cells via regulation of PKC and Akt-dependent downstream effectors, such as GSK3α/β and Foxo1. We found that PDK1 deletion strongly impaired B cell receptor (BCR) signaling, but IL-4 costimulation was sufficient to restore BCR-induced proliferation. IL-4 also normalized PKCβ activation and hexokinase II expression in BCR-stimulated cells, suggesting that this signaling pathway can act independent of PDK1 to support B cell growth. In summary, our results demonstrate that PDK1 is indispensable for B cell survival, proliferation, and growth regulation.
    Proceedings of the National Academy of Sciences of the United States of America. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BAFF is a soluble factor required for B cell maturation and survival. BAFF-R signals via the noncanonical NF-κB pathway regulated by the TRAF3/NIK/IKK1 axis. We show that deletion of Ikk1 during early B cell development causes a partial impairment in B cell maturation and BAFF-dependent survival, but inactivation of Ikk1 in mature B cells does not affect survival. We further show that BAFF-R employs CD19 to promote survival via phosphatidylinositol 3-kinase (PI3K), and that coinactivation of Cd19 and Ikk1 causes a profound block in B cell maturation at the transitional stage. Consistent with a role for PI3K in BAFF-R function, inactivation of PTEN mediates a partial rescue of B cell maturation and function in Baff(-/-) animals. Elevated PI3K signaling also circumvents BAFF-dependent survival in a spontaneous B cell lymphoma model. These findings indicate that the combined activities of PI3K and IKK1 drive peripheral B cell differentiation and survival in a context-dependent manner.
    Cell Reports 11/2013; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian target of rapamycin (mTOR), an essential serine/threonine kinase, functions in biochemically distinct multi-protein complexes but little is known about roles of the complexes in B cells. The acutely rapamycin-sensitive mTOR complex 1 (mTORC1) is defined by a core subunit Raptor whereas mTORC2 lacks Raptor and instead has Rictor and SIN1 as distinct essential components. We now show that homeostasis and function of B cells require Rictor. Conditional deletion of Rictor prior to lymphoid specification impaired generation of mature follicular, marginal zone, and B1a B lymphocytes. Induced inactivation in adult mice caused cell-autonomous defects in B lymphoid homeostasis and antibody responses in vivo along with impacting plasma cells in bone marrow. Survival of B lymphocytes depended on Rictor, which was vital for normal induction of pro-survival genes, suppression of pro-apoptotic genes, NF-κB nuclear induction after BCR stimulation, and BAFF-induced NF-κB2/p52 generation. Collectively, the findings provide evidence that mTOR signaling impacts survival and proliferation of mature B lymphocytes, and establish Rictor as an important signal relay in B cell homeostasis, fate, and functions.
    Blood 08/2013; · 9.78 Impact Factor
  • Robert C Rickert
    [Show abstract] [Hide abstract]
    ABSTRACT: The B cell receptor (BCR) and its precursor (pre-BCR) control B cell homeostasis, differentiation and function. Moreover, aberrant pre-BCR and BCR signalling have a central role in B cell neoplasia; for example, enhanced positive signalling or disrupted negative signalling downstream of the pre-BCR promotes B cell acute lymphocytic leukaemia. The emerging distinctions between tonic and chronic active BCR signalling have contributed to the identification of oncogenic targets downstream of BCR signalling in mature B cell neoplasms. Indeed, the encouraging results of several ongoing clinical trials that target the activity of phosphoinositide 3-kinase δ-isoform (PI3Kδ), Bruton tyrosine kinase (BTK) or spleen tyrosine kinase (SYK) downstream of the BCR highlight the therapeutic potential of inhibiting BCR signalling.
    Nature Reviews Immunology 08/2013; 13(8):578-91. · 32.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the secondary lymphoid organs, intimate contact with follicular dendritic cells (FDCs) is required for B cell retention and Ag-driven selection during the germinal center response. However, selection of self-reactive B cells by Ag on FDCs has not been addressed. To this end, we generated a mouse model to conditionally express a membrane-bound self-antigen on FDCs and to monitor the fate of developing self-reactive B cells. In this article, we show that self-antigen displayed on FDCs mediates effective elimination of self-reactive B cells at the transitional stage. Notwithstanding, some self-reactive B cells persist beyond this checkpoint, showing evidence of Ag experience and intact proximal BCR signaling, but they are short-lived and unable to elicit T cell help. These results implicate FDCs as an important component of peripheral B cell tolerance that prevents the emergence of naive B cells capable of responding to sequestered self-antigens.
    The Journal of Immunology 07/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The C1858T single nucleotide polymorphism in PTPN22, which is the gene encoding lymphoid tyrosine phosphatase (LYP), confers increased risk for various autoimmune disorders in Caucasians. Although the disease-associated LYP allele (LYP∗W620) is a gain-of-function variant that has higher catalytic activity than the major allele (LYP∗R620), it is still unclear how LYP∗W620 predisposes for autoimmunity. Here, we compared both T cell signaling and T cell function in healthy human donors homozygous for either LYP∗R620 or LYP∗W620. Generally, the presence of LYP∗W620 caused reduced proximal T cell antigen receptor-mediated signaling (e.g. ζ chain phosphorylation) but augmented CD28-associated signaling (e.g. AKT activation). Altered ligand binding properties of the two LYP variants could explain these findings since LYP∗R620 interacted more strongly with the p85 subunit of PI3K. Variation in signaling between cells expressing either LYP∗R620 or LYP∗W620 also affected the differentiation of conventional CD4(+) T cells. For example, LYP∗W620 homozygous donors displayed exaggerated Th1 responses (e.g. IFNγ production) and reduced Th17 responses (e.g. IL-17 production). Importantly, while regulatory T cells normally suppressed Th1-mediated IFNγ production in LYP∗R620 homozygous individuals, such suppression was lost in LYP∗W620 homozygous individuals. Altogether, these findings provide a molecular and cellular explanation for the autoimmune phenotype associated with LYP∗W620.
    Human immunology 01/2013; · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other cell lineages. Furthermore, within different hematopoietic progenitor populations the D-type cyclins play nonredundant roles. The basis of this lineage and developmental specificity is unknown. In pro-B cells we demonstrate four distinct nuclear D-type cyclin compartments, including one cyclin D3 fraction associated with CDK4 and another phosphoinositide 3-kinase-regulated fraction not required for proliferation. A third fraction of cyclin D3 was associated with the nuclear matrix and repression of >200 genes including the variable (V) gene segments Igkv1-117, Iglv1, and Igh-VJ558. Consistent with different subnuclear compartments and functions, distinct domains of cyclin D3 mediated proliferation and Igk V gene segment repression. None of the cyclin D3 nuclear compartments overlapped with cyclin D2, which was distributed, unbound to CDK4, throughout the nucleus. Furthermore, compartmentalization of the cyclins appeared to be lineage restricted because in fibroblasts, cyclin D2 and cyclin D3 occupied a single nuclear compartment and neither bound CDK4 efficiently. These data suggest that subnuclear compartmentalization enables cyclin D3 to drive cell cycle progression and repress V gene accessibility, thereby ensuring coordination of proliferation with immunoglobulin recombination.
    Journal of Experimental Medicine 10/2012; · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ag receptor diversity involves the introduction of DNA double-stranded breaks during lymphocyte development. To ensure fidelity, cleavage is confined to the G(0)-G(1) phase of the cell cycle. One established mechanism of regulation is through periodic degradation of the RAG2 recombinase protein. However, there are additional levels of protection. In this paper, we show that cyclical changes in the IL-7R signaling pathway functionally segregate pro-B cells according to cell cycle status. In consequence, the level of a downstream effector of IL-7 signaling, phospho-STAT5, is inversely correlated with cell cycle expression of Rag, a key gene involved in recombination. Higher levels of phopho-STAT5 in S-G(2) correlate with decreased Rag expression and Rag relocalization to pericentromeric heterochromatin. These cyclical changes in transcription and locus repositioning are ablated upon transformation with v-Abl, which renders STAT5 constitutively active across the cell cycle. We propose that this activity of the IL-7R/STAT5 pathway plays a critical protective role in development, complementing regulation of RAG2 at the protein level, to ensure that recombination does not occur during replication. Our data, suggesting that pro-B cells are not a single homogeneous population, explain inconsistencies in the role of IL-7 signaling in regulating Igh recombination.
    The Journal of Immunology 05/2012; 188(12):6084-92. · 5.52 Impact Factor
  • Robert C Rickert, Guy S Salvesen, Carl F Ware
    [Show abstract] [Hide abstract]
    ABSTRACT: In a paper in this issue of the Biochemical Journal that questions the role of c-IAP1 (cellular inhibitor of apoptosis 1) in inflammation, new results from the Duckett laboratory remind us of the importance of truly knowing the mice we depend on. It turns out that c-IAP1 is tightly linked to caspase 11 and cannot be segregated by recombination. This disturbing result implies that immune functions ascribed to c-IAP1 may be due to the caspase 11 mutation that is co-inherited with the locus.
    Biochemical Journal 04/2012; 443(2):e1-2. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.
    Nature Chemical Biology 03/2012; 8(5):437-46. · 12.95 Impact Factor
  • Source
  • Source
    Robert C Rickert, Julia Jellusova, Ana V Miletic
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the tumor necrosis factor receptor superfamily (TNFRSF) participate prominently in B-cell maturation and function. In particular, B-cell activating factor belonging to the TNF family receptor (BAFF-R), B-cell maturation antigen (BCMA), and transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) play critical roles in promoting B-cell survival at distinct stages of development by engaging a proliferation-inducing ligand (APRIL) and/or BAFF. CD40 is also essential for directing the humoral response to T-cell-dependent antigens. Signaling by the TNFRSF is mediated primarily, albeit not exclusively, via the TNFR-associated factor (TRAF) proteins and activation of the canonical and/or non-canonical nuclear factor-κB (NF-κB) pathways. Dysregulated signaling by TNFRSF members can promote B-cell survival and proliferation, causing autoimmunity and neoplasia. In this review, we present a current understanding of the functions of and distinctions between APRIL/BAFF signaling by their respective receptors expressed on particular B-cell subsets. These findings are compared and contrasted with CD40 signaling, which employs similar signaling conduits to achieve distinct cellular outcomes in the context of the germinal center response. We also underscore how new findings and conceptual insights into TNFRSF signaling are facilitating the understanding of B-cell malignancies and autoimmune diseases.
    Immunological Reviews 11/2011; 244(1):115-33. · 12.16 Impact Factor
  • Source
    Matthew H Cato, Irene W Yau, Robert C Rickert
    [Show abstract] [Hide abstract]
    ABSTRACT: Detailed biochemical analysis of unmanipulated germinal center (GC) B cells has not been achieved. Previously, we designed and used a simple, economical and new magnetic bead separation scheme for the purification of 'untouched' mature GC and non-GC B cells from the spleens of immunized mice and reported the first biochemical assessment of the signaling cascades that contribute to cyclin D stability and GC B cell proliferation. Here we provide a detailed protocol for the method we used, which involves preparing single-cell suspension from the spleens of immunized mice, followed by labeling of nontarget cells with biotinylated antibodies specific for CD43, CD11c and IgD (for GC enrichment) or GL7 (for non-GC enrichment); these steps are followed by cell depletion using standard magnetic bead technology. This protocol can yield GC and non-GC B cells with purities exceeding 90%. The sorting process can be carried out in ∼1 h and provides a population of GC B cells of sufficient purity and quantity to allow ex vivo manipulation, including biochemical and genetic analysis as well as cell culture.
    Nature Protocol 06/2011; 6(7):953-60. · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase (PI3K) defines a family of lipid kinases that direct a wide range of cellular processes and cell fate decisions. Since its discovery, and that of its enzymatic antagonist PTEN, much of the focus on PI3K has been on its oncogenic potential. In recent years, studies on PI3K signaling in B lymphocytes have established the importance of this pathway in effecting B cell differentiation and associated molecular events such as V(D)J recombination and class switch recombination. Intriguing new findings also indicate that there is specificity in the PI3K pathway in B cells, including preferential expression or usage of particular PI3K isoforms and counter-regulation by the PTEN and SHIP phosphatases. The role of PI3K adaptor proteins (CD19, BCAP, and TC21) has also undergone revision to reflect both shared and unique properties. The emergence of Foxo1 as a critical PI3K regulatory target for B cell differentiation has united membrane proximal regulatory events orchestrated by PI3K/PTEN/SHIP with key transcriptional targets. Insights into the regulation and impact of PI3K signaling have been brought to bear in new treatments for B cell malignancies, and will also be an important topic of consideration for B cell-dependent autoimmune diseases.
    Current opinion in immunology 01/2011; 23(2):178-83. · 10.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity. Using a structure-based approach, we synthesized a library of 34 compounds that inhibited Lyp with IC(50) values between 0.27 and 6.2 μM. A reporter assay was employed to screen for compounds that enhanced TCR signaling in cells, and several inhibitors displayed a dose-dependent, activating effect. Subsequent probing for Lyp's direct physiological targets by immunoblot analysis confirmed the ability of the compounds to inhibit Lyp in T cells. Selectivity profiling against closely related tyrosine phosphatases and in silico docking studies with the crystal structure of Lyp yielded valuable information for the design of Lyp-specific compounds.
    Journal of Medicinal Chemistry 01/2011; 54(2):562-71. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.
    Molecular and Cellular Biology 10/2010; 31(1):127-37. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The marginal zone is a cellular niche bordering the marginal sinus of the spleen that contains specialized B-cell and macrophage subsets poised to capture bloodborne antigens. Marginal zone B cells are retained in this niche by integrin-mediated signaling induced by G protein-coupled receptors (GPCRs) and, likely, the B-cell receptor (BCR). Sphingosine-1-phosphate (S1P) signaling via the S1P family of GPCRs is known to be essential for B-cell localization in the marginal zone, but little is known about the downstream signaling events involved. Here, we demonstrate that the adaptor protein SHEP1 is required for marginal zone B-cell maturation. SHEP1 functions in concert with the scaffolding protein CasL, because we show that SHEP1 and CasL are constitutively associated in B cells. SHEP1 association is required for the BCR or S1P receptor(s) to induce the conversion of CasL into its serine/threonine hyperphosphorylated form, which is important for lymphocyte adhesion and motility. Thus, SHEP1 orchestrates marginal zone B-cell movement and retention as a key downstream effector of the BCR and S1P receptors.
    Proceedings of the National Academy of Sciences 10/2010; 107(44):18944-9. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inositol phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP) negatively regulate phosphatidylinositol-3-kinase (PI3K)-mediated growth, survival, and proliferation of hematopoietic cells. Although deletion of PTEN in mouse T cells results in lethal T cell lymphomas, we find that animals lacking PTEN or SHIP in B cells show no evidence of malignancy. However, concomitant deletion of PTEN and SHIP (bPTEN/SHIP(-/-)) results in spontaneous and lethal mature B cell neoplasms consistent with marginal zone lymphoma or, less frequently, follicular or centroblastic lymphoma. bPTEN/SHIP(-/-) B cells exhibit enhanced survival and express more MCL1 and less Bim. These cells also express low amounts of p27(kip1) and high amounts of cyclin D3 and thus appear poised to undergo proliferative expansion. Unlike normal B cells, bPTEN/SHIP(-/-) B cells proliferate to the prosurvival factor B cell activating factor (BAFF). Interestingly, although BAFF availability may promote lymphoma progression, we demonstrate that BAFF is not required for the expansion of transferred bPTEN/SHIP(-/-) B cells. This study reveals that PTEN and SHIP act cooperatively to suppress B cell lymphoma and provides the first direct evidence that SHIP is a tumor suppressor. As such, assessment of both PTEN and SHIP function are relevant to understanding the etiology of human B cell malignancies that exhibit augmented activation of the PI3K pathway.
    Journal of Experimental Medicine 10/2010; 207(11):2407-20. · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor ATF2 was previously shown to be an ATM substrate. Upon phosphorylation by ATM, ATF2 exhibits a transcription-independent function in the DNA damage response through localization to DNA repair foci and control of cell cycle arrest. To assess the physiological significance of this phosphorylation, we generated ATF2 mutant mice in which the ATM phosphoacceptor sites (S472/S480) were mutated (ATF2(KI)). ATF2(KI) mice are more sensitive to ionizing radiation (IR) than wild-type (ATF2 (WT)) mice: following IR, ATF2(KI) mice exhibited higher levels of apoptosis in the intestinal crypt cells and impaired hepatic steatosis. Molecular analysis identified impaired activation of the cell cycle regulatory protein p21(Cip/Waf1) in cells and tissues of IR-treated ATF2(KI) mice, which was p53 independent. Analysis of tumor development in p53(KO) crossed with ATF2(KI) mice indicated a marked decrease in amount of time required for tumor development. Further, when subjected to two-stage skin carcinogenesis process, ATF2(KI) mice developed skin tumors faster and with higher incidence, which also progressed to the more malignant carcinomas, compared with the control mice. Using 3 mouse models, we establish the importance of ATF2 phosphorylation by ATM in the acute cellular response to DNA damage and maintenance of genomic stability.
    Genes & cancer 04/2010; 1(4):316-330.

Publication Stats

3k Citations
605.93 Total Impact Points

Institutions

  • 2005–2013
    • Sanford-Burnham Medical Research Institute
      • • Inflammatory Disease Research Program
      • • Infectious and Inflammatory Disease Center
      La Jolla, California, United States
  • 2012
    • University of Minnesota Duluth
      • Laboratory Medicine and Pathology
      Duluth, Minnesota, United States
  • 2008
    • Rigshospitalet
      • Department of Haematology
      København, Capital Region, Denmark
  • 1998–2006
    • University of California, San Diego
      • Department of Medicine
      San Diego, CA, United States
  • 2004
    • University of South Florida
      Tampa, Florida, United States
  • 2003
    • National University (California)
      San Diego, California, United States
  • 1995–1998
    • University of Cologne
      • Institute for Genetics
      Köln, North Rhine-Westphalia, Germany