Nicole Aumont

McGill University, Montréal, Quebec, Canada

Are you Nicole Aumont?

Claim your profile

Publications (16)41.69 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The entorhinal cortex lesion paradigm is a widely accepted and efficient method to provoke reactive synaptogenesis and terminal remodeling in the adult CNS. This approach has been used successfully to contrast the profile of reactivity from various proteins associated with Alzheimer's disease pathophysiology in wild-type and apolipoprotein E (apoE)-deficient (APOE ko) mice. Results indicate that the production of the beta-amyloid 1-40 peptide (A beta 40) is increased in response to neuronal injury, with a timing that is different between wild-type and APOE ko animals. Moreover, we report that baseline levels of the A beta 40 peptide are significantly higher in the APOE ko mice. The expression of the apolipoprotein E receptor type 2 (apoER2) is also modulated by the deafferentation process in the hippocampus, but only in APOE ko mice. These results provide novel insights as to the molecular mechanisms responsible for the poor plastic response reported in apoE4-expressing and apoE deficient mice in response to hippocampal injury.
    Neuroscience 12/2007; 150(1):58-63. · 3.12 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Emerging evidences indicate a role for lipoprotein lipase (LPL) in degenerative states. Genetic variations in the LPL gene were previously associated to lipid imbalance and coronary artery disease (CAD) risk and severity, a condition that shares pathological features with common Alzheimer's disease (AD). To evaluate whether these genetic variations associate with the risk and pathophysiology of common AD, autopsy-confirmed patients (242 controls, 153 AD) were genotyped for a PvuII single nucleotide polymorphism (SNP; rs285; referred to as the P+ allele) of LPL. Brain LPL mRNA levels, cholesterol levels, amyloid concentration, senile plaques and neurofibrillary tangles density counts were measured and contrasted with specific LPL genotypes. When adjusted for age and sex, homozygosity for the P+ allele resulted in an odds ratio of 2.3 for the risk of developing AD. More importantly, we report that the presence of the P+ allele of LPL significantly affects its mRNA expression level (n = 51; P = 0.026), brain tissue cholesterol levels (n = 55; P = 0.0013), neurofibrillary tangles (n = 52; P = 0.025) and senile plaque (n = 52; P = 0.022) densities. These results indicate that a common polymorphism in the lipoprotein lipase gene modulates the risk level for sporadic AD in the eastern Canadian population but more importantly, indirectly modulates the pathophysiology of the brain in autopsy-confirmed cases.
    European Journal of Neuroscience 10/2006; 24(5):1245-51. · 3.75 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: ApoER2 is one of the major receptors for ApoE in the brain, and has been shown to be involved not only in lipoprotein endocytosis, as other members of the LDL receptor family of receptors, but also in various cellular functions such as signalling and cellular guidance. By using a model of synaptic plasticity in mice lacking none, one or two alleles of the apoER2 gene, we investigated the implication of such a receptor deficiency on the remodelling process. Our results indicate that animals lacking apoER2 express higher levels of brain APP, as well as both key amyloid peptides, while apoE levels are slightly lower. Following entorhinal cortex lesioning, apoE levels increase in the deafferented hippocampus, while a delay in the increase of APP was observed. Hippocampal amyloid levels are also increased in response to the lesion, and highly potentiated by the complete absence of apoER2 gene. The results suggest a significant role for apoER2 in signalling various proteins in response to massive deafferentation and may participate in maintaining efficient synaptic plasticity and dendritic remodelling.
    Neurobiology of Aging 03/2005; 26(2):195-206. · 6.17 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Epidemiological studies have shown that use of non-steroidal anti-inflammatory drugs (NSAIDs) by the elderly is associated with a decreased relative risk and a delayed onset of Alzheimer's disease (AD). In contrast, the apolipoprotein E (apoE) gene has proven to be a risk factor for AD with apoE epsilon 4 AD patients having been found to show lower levels of brain apoE. In the present study, treatment of primary rat mixed glial cell cultures with the common NSAIDs, indomethacin and aspirin, induced significant increases in extracellular apoE protein levels. Similarly, treatment of primary rat astrocyte cell cultures with aspirin and a cyclooxygenase (COX)-2-selective aspirin derivative also stimulated significant increases in apoE protein. However, astrocyte and mixed glial apoE protein levels were significantly reduced following exposure to COX-2-specific indomethacin amides and an inactive indomethacin derivative. ApoE protein modulation was observed at physiological and subphysiological concentrations well below the COX inhibition IC50 values of the NSAIDs used, suggestive of a COX-independent mechanism. In contrast to these results, indomethacin and aspirin treatment failed to induce any significant changes in apoE mRNA levels. The failure of NSAIDs to significantly alter apoE expression may have been indicative of a nontranscriptional mechanism of apoE protein induction. Consequently, NSAID-induced increases in apoE protein may enhance apoE-mediated immunosuppression and compensatory synaptic plasticity, potentially resulting in decreased AD risk and delay of disease onset.
    European Journal of Neuroscience 10/2003; 18(6):1428-38. · 3.75 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The H2 allele of apolipoprotein (apo) C-I is associated with Alzheimer's disease (AD). However, this association is potentially confounded by the linkage disequilibrium of H2 with the ϵ2 and ϵ4 alleles of apoE and of H1 with the ϵ3 allele. To establish plausibility for a direct role for apoC-I in AD, we compared apoC-I and apoE protein and mRNA levels in postmortem specimens of frontal cortex and hippocampus from AD patients with levels in nondemented controls. In H2-allelic individuals (usually also ϵ4 carriers), apoC-I mRNA levels were strikingly lower with AD (by 65%, P < 0.05), but apoC-I protein levels in AD were significantly higher (by 34%, P < 0.05). The opposite direction of the apoC-I mRNA and apoC-I protein level changes in AD in the ϵ4/H2 genotype may reflect decreased clearance of CNS lipoproteins associated with apoE4. In H1/H1 (usually ϵ3/ϵ3) individuals, both apoC-I protein and mRNA were lower in AD. ApoC-I protein levels in hippocampus were nearly twice those in frontal cortex. Immunohistochemistry of hippocampus revealed colocalization of apoC-I protein with the astrocytic marker GFAP. In addition, cultured human astrocytes expressed the mRNA for apoC-I. This study confirms apoC-I expression in the CNS and identifies astrocytes as the source of apoC-I. In addition, it has revealed differences in apoC-I expression based on site, genotype, and disease status that may reflect a role for apoC-I in the pathogenesis of AD.
    Neurobiology of Disease 12/2001; · 5.62 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Excessive extracellular deposition of amyloid beta (Abeta) peptide in neuritic plaques and degeneration of forebrain cholinergic neurones, which innervate the hippocampus and the neocortex, are the invariant characteristic features of Alzheimer's disease (AD). Studies of the pathological changes that characterize AD, together with several other lines of evidence, indicate that Abeta accumulation in vivo may initiate and/or contribute to the process of neurodegeneration observed in the AD brain. However, the underlying mechanisms by which Abeta peptide influences/causes degeneration of the basal forebrain cholinergic neurones in AD brains remain obscure. We reported earlier that nM concentrations of Abeta-related peptides, under acute conditions, can potently inhibit K+-evoked endogenous acetylcholine (ACh) release from the hippocampus and the cortex but not from striatum in young adult rats (J. Neurosci. 16 (1996) 1034). In the present study, to determine whether the effects of Abeta peptides alter with normal aging and/or cognitive state, we have measured Abeta1-40 levels and the effects of exogenous Abeta1-40 on hippocampal ACh release in young adult as well as aged cognitively-unimpaired (AU) and -impaired (AI) rats. Endogenous levels of Abeta(1-40) in the hippocampus are significantly increased in aged rats. Additionally, 10 nM Abeta1-40 potently inhibited endogenous ACh release from the hippocampus of the three groups of rats, but the time-course of the effects clearly indicate that the cholinergic neurones of AI rats are more sensitive to Abeta peptides than either AU or young adult rats. These results, together with earlier reports, suggest that the processing of the precursor protein of Abeta peptide alters with normal aging and the response of the cholinergic neurones to the peptide possibly varies with the cognitive status of the animals.
    Journal of Chemical Neuroanatomy 07/2001; 21(4):323-9. · 2.48 Impact Factor
  • Neurobiology of Aging - NEUROBIOL AGING. 01/2000; 21:205-205.
  • Doris Dea, Nicole Aumont, Judes Poirier
    Neurobiology of Aging - NEUROBIOL AGING. 01/2000; 21:115-115.
  • [show abstract] [hide abstract]
    ABSTRACT: The ϵ4 allele of apolipoprotein E (apoE) is associated with increased risk for the development of Alzheimer's disease (AD), possibly due to interactions with the β-amyloid (Aβ) protein. The mechanism by which these two proteins are linked to AD is still unclear. To further assess their potential relationship with the disease, we have determined levels of apoE and Aβ isoforms from three brain regions of neuropathologically confirmed AD and non-AD tissue. In two brain regions affected by AD neuropathology, the hippocampus and frontal cortex, apoE levels were found to be decreased while Aβ1–40 levels were increased. Levels of apoE were unchanged in AD cerebellum. Furthermore, levels of apoE and Aβ1–40 were found to be apoE genotype dependent, with lowest levels of apoE and highest levels of Aβ1–40 occurring in ϵ4 allele carriers. These results suggest that reduction in apoE levels may give rise to increased deposition of amyloid peptides in AD brain.
    Brain Research 11/1999; · 2.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Both apolipoprotein E (apoE) and amyloid peptides are associated with Alzheimer's disease (AD). Using primary hippocampal neurons, we demonstrate that apoE is capable of reducing potentially toxic extracellular amyloid peptides, likely through a receptor mediated mechanism. We hypothesize that isoform-specific differences in apoE-mediated amyloid clearance and intracellular accumulation may be responsible, at least in part, for the increased number of amyloid plaques observed in apoE ϵ4 allele AD individuals.
    Molecular Brain Research 06/1999; · 2.00 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The frequency of the epsilon4 allele of apolipoprotein E (apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to beta-amyloid (A beta) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and A beta in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of A beta peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic A beta peptides, in particular A beta(1-42), A beta(1-40), and A beta(25-35), increase significantly apoE-liposome binding to hippocampal neurons. For each A beta peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the A beta peptides to increase apoE binding, A beta(25-35), was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, A beta(1-40) uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that A beta peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.
    Journal of Neurochemistry 05/1998; 70(4):1458-66. · 3.97 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.
    Journal of Neurochemistry 03/1998; 70(4):1458 - 1466. · 3.97 Impact Factor
  • Neurobiology of Aging - NEUROBIOL AGING. 01/1996; 17(4).
  • Neurobiology of Aging - NEUROBIOL AGING. 01/1996; 17(4).
  • [show abstract] [hide abstract]
    ABSTRACT: Excessive free radical formation or antioxidant enzyme deficiency can result in oxidative stress, a mechanism proposed in the toxicity of MPTP and in the etiology of Parkinson's disease (PD). However, it is unclear if altered antioxidant enzyme activity is sufficient to increase lipid peroxidation in PD. We therefore investigated if MPTP can alter the activity of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) and the level of lipid peroxidation. L-Deprenyl, prior to MPTP administration, is used to inhibit MPP+ formation and its subsequent effect on antioxidant enzymes. MPTP induced a threefold increase in SOD activity in the striatum of C57BL/6 mice. No parallel increase in GSH-PX or CAT activities was observed, while striatal lipid peroxidation decreased. At the level of the substantia nigra (SN), even though increases in CAT activity and reduction in SOD and GSH-PX activities were detected, lipid peroxidation was not altered. Interestingly, L-deprenyl induced similar changes in antioxidant enzymes and lipid peroxidation levels, as did MPTP. Taken together, these results suggest that an alteration in SOD activity, without compensatory increases in CAT or GSH-PX activities, is not sufficient to induce lipid peroxidation.
    Journal of Neurochemistry 01/1996; 65(6):2725-33. · 3.97 Impact Factor
  • 01/1970: pages 211-219;