Are you Planck HFI Core Team?

Claim your profile

Publications (2)0 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4^2. The white noise level is around 1.5 {\mu}K degree or less in the 3 main CMB channels (100--217GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project.
    01/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands centered at 100, 143, 217, 353, 545 and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009. The bolometers cooled to 100 mK as planned. The settings of the readout electronics, such as the bolometer bias current, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn verified both the optical system and the time response of the detection chains. The optical beams are close to predictions from physical optics modeling. The time response of the detection chains is close to pre-launch measurements. The detectors suffer from an unexpected high flux of cosmic rays related to low solar activity. Due to the redundancy of Planck's observations strategy, the removal of a few percent of data contaminated by glitches does not affect significantly the sensitivity. The cosmic rays heat up significantly the bolometer plate and the modulation on periods of days to months of the heat load creates a common drift of all bolometer signals which do not affect the scientific capabilities. Only the high energy cosmic rays showers induce inhomogeneous heating which is a probable source of low frequency noise.
    01/2011;